Тогда я заставил компьютер выполнить 256 испытаний по шесть бросков каждое. Первые 256 испытаний дали близкую к ожидаемому значению величину 3,49 со средним квадратичным отклонением 0,69, то есть две трети результатов оказались в интервале между 4,18 и 2,80. Только в 10% испытаний средние значения были меньше 2,5 или больше 4,5, в то время как больше половины значений попало в интервал от 3,0 до 4,0. Продолжая насиловать компьютер, я повторил серию из 256 испытаний десять раз. Усреднив результаты, полученные в каждой из десяти выборок, я затем усреднил эти средние и получил 3,499 (я привожу результат с точностью до трех знаков после запятой, чтобы показать степень приближения к 3,5). Впечатляющим оказалось уменьшение величины среднего квадратичного отклонения до 0,044. При этом пять средних оказались ниже 3,5 и пять выше, а семь из десяти выборок по 256 испытаний дали значение в пределах от 3,455 до 3,543. Это неплохая точность. Как выяснил Якоб Бернулли, количества важны. Это он обратил внимание на то, что среднее от средних значений отдельных выборок удивительным образом снижает дисперсию вокруг основного среднего значения, — утверждение, известное как центральная предельная теорема. Эта теорема была впервые сформулирована Лапласом в 1809 году в работе, которую он закончил и опубликовал перед тем, как в 1810 году ознакомился с «Theoria Motus» Гаусса. Среднее от средних интересно еще и с другой стороны. Мы начали эксперименты с бросанием шестигранной кости, каждая грань которой имеет равные шансы выпасть. Распределение получалось плоским, не имеющим ничего общего с нормальным. По мере того как компьютер моделировал все большее и большее число бросков, накапливая число выборок, мы получали всё больше и больше информации о свойствах кости. Очень редко среднее значение в испытании из шести бросков оказывалось близким к шести или к единице; большая часть их оказывалась между двумя и тремя или четырьмя и пятью. Структура результатов в точности повторила расчеты Кар дано, выполненные им для игры 250 лет назад, когда он начал нащупывать подходы к вероятностным законам. Множество бросков одной кости дают среднее значение 3,5. Отсюда ясно, что многократное бросание двух костей даст в среднем удвоенную величину, то есть 7,0. Как показал Кардано, значения, отличающиеся от 7 в ту или другую сторону, будут встречаться с одинаково убывающей частотой по мере продвижения от 7 к 2 или к 12. — 116 —
|