По-настоящему независимые наблюдения дают богатую информацию о вероятностях. Возьмем для примера кости. Все шесть сторон костяного кубика могут выпасть с равной вероятностью. Если графически представить вероятность получить каждое из шести возможных значений, мы получим горизонтальную прямую на уровне Ve- График не будет иметь ничего общего с нормальной кривой, как выборка, состоящая из одного броска, ничего не скажет о шансах ожидания того или иного значения кости. Мы окажемся в состоянии слепых, ощупывающих слона. Бросим теперь кость шесть раз и посмотрим, что получится. (Я моделировал этот опыт на моем компьютере, чтобы быть уверенным в том, что в результате получаются случайные числа.) Первая серия из шести бросков дала четыре пятерки, одну шестерку и одну четверку, в среднем ровно 5,0. Во второй серии получилась смесь из трех шестерок, двух четверок и одной двойки, в среднем 4,7. Информации не намного больше. После десяти испытаний по шесть бросков каждый средние результаты по шести броскам стали группироваться около значения 3,5, являющегося средним числом очков на поверхности кости: (1 + 2 + + 3 + 4 + 5 + 6):6 = 3,5 — и ровно половиной величины математического ожидания при бросании двух костей. Шесть моих средних были ниже 3,5 и четыре превышали это число. Вторая серия из десяти бросков дала следующие результаты: четыре раза среднее значение было ниже 3,0, четыре раза оно превышало 4,0, было также по одному значению выше 4,5 и ниже 2,5. Следующим шагом было определение среднего значения первых десяти испытаний по шесть бросков каждый. В то время как распределение в каждом из этих испытаний, рассматриваемых по отдельности, само по себе мало о чем говорило, среднее от средних оказалось равным 3,48! Теперь среднее уточнилось, но среднее квадратичное отклонение оказалось равным 0,82 — значительно большим, чем хотелось бы2). (Среднее квадратичное отклонение — это величина, которую де Муавр предложил использовать для измерения разброса наблюдаемых значений вокруг среднего значения. В распределении де Муавра приблизительно две трети (68,26%) результатов наблюдений в большую или меньшую сторону отличаются от среднего значения на величину среднего квадратичного отклонения; 95,46% отличаются от среднего на удвоенное среднее квадратичное отклонение). Иными словами, в семи из десяти испытаний среднее значение оказалось в пределах 3,48 + 0,82 и 3,48 - 0,82, или между 4,30 и 2,66; в остальных трех испытаниях разброс результатов был еще большим. — 115 —
|