-- это либо волны де Бройля, либо какие-то похожие на них волны. (Впрочем, гениальная интуиция и научная смелость де Бройля заслуживают, чтобы и эти, "дебройлеподобные" волны были названы его именем.) Во-первых, волна де Бройля системы имеет частоту, равную сумме частот волн де Бройля ее частей. То есть ее информационная емкость увеличивается пропорционально росту системы. Множество разрозненных объектов делают системой связи между объектами. А эти связи привносит и, таким образом, "превращает" разрозненные элементы в целостный объект, как это ни парадоксально звучит, наблюдатель. Я могу считать Солнце и планеты "отдельно существующими" небесными телами, каждое -- своей волной де Бройля со своей частотой, а могу считать их частями единого объекта -- Солнечной системы, -- то есть "суммарной" волной де Бройля с "суммарной" частотой. "Произвол" наблюдателя может быть и еще более явным. Я могу посчитать письменный стол, за которым я работаю, и обеденный стол, за которым я ем, представителями большого отряда предметов "Столы". И этот отряд миллионов столов, из которых лично мне известны только единицы, я превращаю в единый объект -- волну де Бройля с частотой несравненно большей, чем частоты волн де Бройля любого известного мне стола. Во всех таких случаях волны де Бройля для системы имеют "психическое" происхождение. И в этом вторая причина предположения, что тонкая материя образована волнами де Бройля. Волна де Бройля -- это колебания НАБЛЮДАЕМОСТИ -- свойства, присущего только ситуации наблюдения, которая связывает наблюдаемую вещь и психику наблюдателя. Собственно, разговор об этой догадке здесь можно и закончить, но мне хочется дополнить его несколькими количественными оценками, сделанными из предположения, что тонкие материи -- это "настоящие" волны де Бройля. И хотя я не без иронии отношусь к таким математическим играм, мне кажется, они могут заинтересовать некоторых преданных науке читателей. Частота волн де Бройля связана с массой покоящегося тела соотношением — 54 —
|