Итак, все триграммы рассмотрены. Значения их названий и свойств, выявленные на основе анализа структуры символов триграмм и тех или иных сочетаний смыслов отдельных позиций, не теряют, как будет показано далее, своей актуальности и при рассмотрении взаимоотношений самих триграмм, образующих те или иные последовательности, как эксплицированные в китайской традиции и сохранившиеся до наших дней, так и реконструируемые, а также при рассмотрении корреляций триграмм с другими комплексами понятий арифмосемиотики. 2.2. Триграммы и стихии Комбинации триграмм и стихий Триграммный порядок Фуси традиционно связывается с фразой из “Си цы чжуани” (I, 11), в которой говорится о дихотомическом делении Великого предела. Однако в этом тексте указывается только сам принцип образования триграмм, а не его конкретное воплощение, в действительности могущее иметь несколько вариантов. Таким образом, если порядок Фуси — не единственный порядок триграмм, который можно построить по принципу дихотомии, то следует предположить, что, во-первых, должны были быть какие-то основания для его выбора среди других порядков, а во-вторых, эти другие тоже могли как-то применяться в арифмосемиотике. Как указывалось ранее (см. гл. 1.2), порядок Фуси строится посредством разбиения позиций триграмм на полярности, которое осуществляется в последовательности снизу вверх, от Земли к Небу (рис. 2.2.1, ср. рис. 1.2.10—12; читается справа налево). Рис. 2.2.1 Однако разбиение позиций на полярности возможно и в других последовательностях. Например, при прохождении позиций сверху вниз, от Неба к Земле, получится порядок триграмм, являющийся зеркальным отражением порядка Фуси (рис. 2.2.2). В обоих случаях позиционное формирование триграмм имеет своим истоком Великий предел. Но в первом случае триграммы как бы “стоят” на нем, а во втором — “висят” под ним. Рис. 2.2.2 Помимо различия в направлении построения позиций (сверху вниз или снизу вверх) существуют еще различия в исходной позиции (1-я, 2-я или 3-я). Таким образом, чередуя последовательность прохождения позиций, можно получить в общей сложности шесть порядков триграмм, которые образуют две серии (А и В), зеркальные друг другу (табл. 2.2.1).
|