Символы и числа «Книги перемен»

Страница: 1 ... 124125126127128129130131132133134 ... 425

Рис. 2.2.7

Если не брать во внимание различия в символике, ракурс схемы и некоторые не отмеченные здесь несущественные подробности, то следует признать, что гексанема в гюрджиевской эннеаграмме, в реконструированных декаграмме и додекаграмме и гексанема, образуемая на круге “младших” триграмм, достаточно схожи по строению и функциям.

Триграммы можно представить в виде чисел от 0 до 7, и тогда сходство эннеаграммы и триграммных схем будет еще большим. Для этого надо поставить в соответствие янским знакам в позициях триграмм X, Y, Z числа 4, 2, 1, суммы которых в каждой триграмме определят соответствующее ей число (табл. 2.2.4).

Таблица 2.2.4

111

110

101

100

011

010

001

000

X

Y

Z

4

2

1

4

2

0

4

0

1

4

0

0

0

2

1

0

2

0

0

0

1

0

0

0

S

7

6

5

4

3

2

1

0

Несмотря на то, что шестеричная базис-схема с триграммами призвана иллюстрировать преобразования порядков шести “младших триграмм”, в ней латентно заложено представление о семеричности. “Старшие” триграммы, начинающие и заканчивающие эти порядки, можно рассматривать как смыкающиеся, и тогда все триграммы обозначат семь частей, на которые делится круг базис-схемы (рис. 2.2.8). Смычка Кунь/Цянь, не участвующая в преобразованиях, будет соответствовать тому лучу семилучевой звезды, с которого начинается деление. “Младшие” триграммы в соответствии со своими численными выражениями будут коррелировать с остальными лучами. Эти оставшиеся лучи попадают в зоны, на которые подразделяется круг при его шестеричном делении. Поэтому условно можно считать, что гексанема связывает именно эти шесть зон, а не пункты разбивки круга на семь частей.

Рис. 2.2.8

“Младшие” триграммы, выстраивающиеся по гексанеме на рассмотренных базис-схемах, образуют следующий замкнутый порядок: 100—110—010—011—001—101 (см. рис. 2.2.4, 2.2.8, ср. рис. 2.1.4). Его характерной особенностью является то, что он последовательно связывает триграммы, имеющие только одну позицию с различающимися знаками. В современной информатике связи двоичных кодов по принципу изменения знака только в одной позиции считаются наиболее энергетически выгодными, а сама операция по преобразованию кода подобным образом называется “шагом Хемминга”. Надо отметить, что для шести “младших” триграмм возможна только одна подобная связь, зафиксированная как раз в гексанеме. Образующийся на основе этой связи порядок триграмм далее будет называться “ротационным” или “ротатором” (R), исходя из того, что одной из его функций является участие в циклических сдвигах при преобразованиях других порядков триграмм.

— 129 —
Страница: 1 ... 124125126127128129130131132133134 ... 425