[6] Эти вопросы мне задавали на самом деле. [7] Капризный читатель возразит, что Сэм также имеет возраст и, следовательно, еще одно измерение. Однако я предположила, что поведение Сэма не меняется в течение многих лет, так что его возраст не имеет значения. ’ [8] Это замечание на самом деле не математическое, но «мальчик субботнего вечера» трехмерен. [9] Roald Dahl. Charlie and the Chocolate Factory (рус. пер.: Даль P. Чарли и шоколадная фабрика. М.: Айрис-Пресс, 2009). [10] Полное название: «Flatland: A Romance of Many Dimensions» (рус. пер.: Эбботт Э. Флатландия. СПб.: Амфора, 2001). [11] Это мультфильм режиссера Эрика Мартина, сопровождаемый голосами Дадли Мура и других актеров британской комедийной труппы За гранью (Beyond the Fringes). Это было очень смешно. [12] Ломти окорока на самом деле имеют некоторую толщину, поэтому они хоть и тонкие, но трехмерные. Их размер в этом дополнительном измерении настолько мал, что в хорошем приближении можно считать ломти двумерными. Однако даже при произвольной толщине двумерных ломтей можно представить себе, как они складываются вместе, образуя трехмерный кусок. [13] Вновь заметим, что для того, чтобы страницы были по-настоящему двумерны, они должны быть бесконечно тонкими, вообще не имеющими никакой толщины в третьем измерении. Однако в данный момент два измерения — это хорошее приближение для страниц такой толщины, как эти. [14] Выхода нет, Ни малейшего. «Джефферсон Старшип» [15] Возможно, что эта история есть результат начала моего обучения в публичной школе № 179 в Квинсе, сомнительно, как мне кажется, названной Школой Льюиса Кэрролла. [16] В оригинале игра слов: OneDLand (Уандиленд, Одномерная страна) и Wonderland (Уанделенд, Волшебная страна). — Прим. пер. [17] Снова игра слов: TwoDLand (Тудиленд, Двумерная страна) и Toadyland (Тоудиленд, Страна подхалимов). — Прим. пер. [18] В этой и последующей главах мы будем говорить о пространственных измерениях. После введения понятий теории относительности мы переключимся на пространство-время и будем рассматривать время как дополнительное измерение. [19] Я буду иногда использовать научное обозначение для очень больших или очень маленьких чисел. Когда степень десяти отрицательна, как, например, 10-33, соответствующее число означает десятичную дробь, например, 10-33 равно 0,000000000000000000000000000000001. Это число необычайно мало, и его было бы крайне утомительно записывать полностью каждый раз, когда оно возникает. Число с положительной степенью десяти, например, 1033 имеет 33 нуля после единицы, т. е. равно чудовищно большому числу 1 000 000 000 000 000 000 000 000 000 000 000, и его опять же трудно полностью писать каждый раз. Я часто буду при первом упоминании приводить число как в научной терминологии, так и словами. — 362 —
|