Закрученные пассажи

Страница: 1 ... 355356357358359360361362363364365 ... 374

1/Mn+2 x 1/rn x1/r2

где r больше R , и силовые линии не могут более распространяться в дополнительных измерениях. Если осуществить отождествление МPl2 = Мп+2Rn , то это будет форма пространственно трехмерного закона силы. Так как Rп есть объем пространства дополнительных измерений, мы получаем, что интенсивность гравитационного взаимодействия уменьшается с объемом, или, что эквивалентно (так как интенсивность тяготения слабее, когда планковский масштаб энергии больше), планковский масштаб энергии большой, если объем большой.

35. Плоская метрика с тремя пространственными измерениями имеет вид

ds2 = dx2 + dy2 + dz2 — с2dt2.

Так как в ней нет никаких коэффициентов, зависящих от пространственных или временной переменных, измерения не зависят от того, где вы находитесь или в каком направлении смотрите. Можно сказать, что пространство-время полностью плоское. Все три пространственные координаты, а также временная координата (с точностью до знака минус, который всегда выделяет время) рассматриваются на равных основаниях. Это означает, что коэффициенты в слагаемых метрики полностью не зависят от положения во времени и пространстве.

36. Метрика закрученной геометрии имеет вид

ds2 = е -k |r | (dx2 + dy2 + dz2 — с2dt2 ) + dr2,

где г — координата пятого измерения. Это говорит нам о том, что при любом фиксированном положении в пятом измерении, соответствующем фиксированному значению г, пространство-время полностью плоское. Однако общий зависящий от г множитель указывает, что способ измерения размера меняется в соответствии с положением объекта в пятом измерении. Экспоненциальное уменьшение коэффициента, являющегося закручивающим конформным фактором, есть причина того, что функция вероятности гравитона экспоненциально уменьшается, а также того, почему мы должны менять масштаб массы, энергии и размера, чтобы получить единую четырехмерную эффективную теорию.

37. Так как пространство не является плоским, объем дополнительных измерений, возникающий при вычислении MPl в четырех измерениях, не равен просто MPl3R, как это было бы в случае плоского пространства. Теперь значение MPl зависит от кривизны. Если метрика имеет форму

ds2 = е -k |r | (dx2 + dy2 + dz2 — с2dt2 ) + dr2

где r — координата пятого измерения, то, приблизительно, MPl2 = М3/k. Иными словами, размер пространства в значительной степени безразличен. Это разумно, так как кривизна пространства, а не размер дополнительного измерения, определяет то, каким образом силовые линии распространяются в дополнительном измерении, и тем самым определяют интенсивность четырехмерной гравитации. На самом деле существует небольшая зависимость от R. Правильная формула имеет вид

— 360 —
Страница: 1 ... 355356357358359360361362363364365 ... 374