31. Волновые функции мод Калуцы — Клейна — это те моды, которые возникают в обобщенном фурье-разложении многомерной волновой функции. 32. Это предполагает также, что в геометрии пространства-времени отсутствуют сингулярности, т. е. места, где пространство-время сжимается до нулевого размера. 33. Д. Кремадес, С. Франко, Л. Ибаньес, Ф. Марчесано, Р. Рабадан и А. Уранга предложили интересную альтернативу. Их идея состоит в том, что частицы закреплены не на индивидуальных бранах, а на пересечениях разных бран. Как и в случае разделенных параллельных бран, простирающиеся между бранами струны должны быть в общем случае тяжелыми. Но легкие или безмассовые частицы возникают от струн нулевой длины, которые в этом случае были бы прикреплены к области, где происходит пересечение бран. 34. Мы можем также показать это несколько иным способом с помощью более математизированного рассуждения. Когда имеются свернутые измерения, силовые линии, исходящие от массивного объекта, ведут себя на малых расстояниях согласно закону тяготения в пространстве с большим числом измерений, а на больших расстояниях — согласно четырехмерному закону тяготения. Единственный способ согласовать два закона силы и гладко переключиться от одного к другому состоит в том, чтобы заметить, что на расстояниях, примерно соответствующих размерам дополнительных измерений, силовые линии расходятся так, как будто существуют только четыре измерения, но с интенсивностью, подавленной за счет дополнительного объема свернутого пространства. За пределами размера дополнительных измерений гравитация ведет себя четырехмерно, но с интенсивностью, подавленной за счет размытия по объему дополнительных измерений. Ньютоновский закон тяготения утверждает, что когда имеются три пространственных измерения, сила пропорциональна 1/MPl2 x 1/r2 Если существуют п дополнительных измерений, то закон силы примет вид 1/Mn+2 x 1/rn+2 где М определяет интенсивность тяготения в пространстве большего числа измерений, аналогично тому, как МPl определяет интенсивность четырехмерной гравитации. Заметим, что силовой закон в пространстве с дополнительными измерениями быстрее меняется как функция r, так как силовые линии расплываются по гиперсфере, поверхность которой имеет п + 2 измерения (в противоположность двумерной поверхности сферы, определяющей закон тяготения в трехмерном пространстве). Однако, когда объем дополнительных измерений конечен и п дополнительных измерений имеют размер R , закон силы примет вид — 359 —
|