Закрученные пассажи

Страница: 1 ... 350351352353354355356357358359360 ... 374

8. Ньютоновское тяготение согласуется с евклидовой геометрией. В евклидовой геометрии длина вектора, проведенного в точку с координатами (х, у, z), равна (х2 + у2 + z2)1/2 и не зависит от системы координат. Это означает, что вы можете вращать вашу систему координат, но расстояние до любой точки не будет меняться, даже если будут меняться отдельные координаты. Специальная теория относительности вводит в эту картину время. Она утверждает, что х2 + у2 + z2 — c2-t2 не зависит от вашего выбора инерциальной системы отсчета. Заметим, что эта инвариантная величина включает и пространство, и время, но время рассматривается иначе из-за знака минус перед слагаемым c2t2. Заметим также, что для того, чтобы эта величина не зависела от выбора инерциальной системы, изменения системы отсчета должны перемешивать значения пространственных и временных координат. Если одна система отсчета движется со скоростью v по отношению к другой в направлении вдоль оси х, преобразования координат от (t, х, у, z ) к (t', х', у', z') будут иметь вид

х' = ?х — c??t, t' = ?t — ??x/c, у' = у, z' = z,

с

где ? — v/c, с — скорость света, ? = (1 — ? 2)-1/2.

9. Уравнения Эйнштейна указывают нам, как определить метрику g?? по известному распределению материи и энергии:

R?? = 1/2g??R = 8?G/c4*T??

Здесь R?? — тензор кривизны Риччи, связанный с метрикой g?? — тензор энергии-импульса, описывающий распределение материи и энергии, G — ньютоновская постоянная тяготения, с — скорость света. Например, для покоящегося вещества плотностью массы ? компонента T 00 = ?, в то время как все другие компоненты тензора равны нулю.

10. Энергия на единичный интервал частоты, излучаемая черным телом температурой Т зависит от частоты f согласно формуле f3/(еhf/kT — 1) , где k = 1,3807 — 10-16 эрг/К — постоянная Больцмана, переводящая температуру в энергию. Обратите внимание на то, что при низких частотах энергия растет с частотой. Однако при частотах, когда энергия кванта hf велика по сравнению с kT, спектр резко обрывается, и излучаемая энергия при больших частотах экспоненциально мала.

11. На самом деле волновая функция является комплекснозначной. Это является источником многих странных свойств квантовой механики. Когда вы складываете две комплексные функции, а затем возводите сумму в квадрат, вы в общем случае получите результат, отличный от того, который получится, если сначала возвести в квадрат, а затем сложить. Это приводит к явлениям интерференции. Например, в эксперименте с двумя щелями вероятность, записанная на экране, возникает от интерференции волн, описывающих два возможных пути электрона.

— 355 —
Страница: 1 ... 350351352353354355356357358359360 ... 374