Рассмотрим теперь трехмерную упаковку узоров, заполняющую все пространство. В повседневном опыте встречается простейший из всех узоров, в котором кубические кусочки сахара упакованы вместе в коробку, или — с несколько более низким уровнем симметрии, поскольку сложенные предметы теперь не являются кубами — сложены вместе спичечные коробки (рис. 6.4). Здесь мы можем заметить, что, в зависимости от деталей, которые мы рассматриваем, мы можем приписать объекту различные типы симметрии. Один тип симметрии мы припишем стопке безличных спичечных коробков, но если мы примем во внимание оформление коробков и, возможно, ориентацию спичек в них, то это заставит нас приписать упаковке несколько более низкий уровень симметрии. Рис. 6.4. Два из возможных способов укладки в трехмерном пространстве. Верхняя диаграмма показывает сложенные вместе кубические элементарные ячейки («кусочки сахара»). Нижняя диаграмма показывает элементарные ячейки («спичечные коробки»). Всего существует семь форм элементарных ячеек, которые можно уложить таким образом, чтобы получить периодическую структуру. Сами по себе элементы могут содержать объекты, влияющие на общую симметрию: мы показали внутренности двух коробков, показывающие, что чередующиеся коробки содержат спички, указывающие в разные стороны. Сколько трехмерных узоров существует? Мы можем обнаружить различные симметрии, задавая различные вопросы. В раннем примере техники трансдукции, упомянутой в связи с с атомной гипотезой Дальтона, французский минеролог и священник Рене-Жюст Гаюи (1743-1822) предположил в 1784 г. в своем Essai d'une th?orie sur la structure des chistaux , что внешняя форма кристаллов отражает устройство их мельчайших единиц. Он пришел к этой точке зрения, когда уронил особенно красивый кристалл кальцита (прозрачная кристаллическая форма карбоната кальция, мела) и обнаружил, что он распался на маленькие кусочки, по форме повторяющие оригинал. Редкий случай, когда разрушение привело к столь хорошему результату. Мы теперь называем маленькие блоки, которые, будучи сложены вместе без использования вращений, заполняют все пространство, элементарными ячейками . Элементарные ячейки могут быть кубическими (как кусочки сахара), прямоугольными, с одной стороной отличной от двух других, прямоугольными, с тремя различными сторонами (как спичечные коробки), или скошенными так, что, хотя противоположные грани и параллельны (они должны быть такими для того, чтобы элементарные ячейки могли заполнить все пространство), они не перпендикулярны к соседним граням. Оказывается, что существует только семь базовых форм этих элементарных ячеек. — 134 —
|