С определенной формальной точки зрения симметрично все. Это так, потому что в число рассматриваемых преобразований симметрии мы включили тождественное преобразование; ведь даже самые несимметричные объекты — смятый газетный лист, например, — как мы можем проверить, выглядят также, если мы откроем глаза после того, как с ними ничего не было сделано. В данный момент это может показаться жульничеством, что, конечно, так и есть. Однако включение тождественного преобразования вводит все объекты в сферу действия математической теории симметрии, так что мы можем пользоваться соображениями симметрии при обсуждении чего угодно, а не только объектов, о которых мы думаем, как о «симметричных». Математика вообще действует таким образом: она обобщает определения, чтобы ее теоремы могли охватить настолько большую область, насколько это возможно. Конечно, хотя все и симметрично (в этом формальном смысле), некоторые вещи более симметричны, чем другие. «Более симметричные» просто означает, что существует больше способов их изменения, таких, что, когда мы откроем глаза, мы не сможем сказать, было произведено действие или нет. Сфера более симметрична, чем куб, а куб более симметричен, чем пальма. Как можно видеть, теперь мы способны упорядочить объекты в соответствии со степенью их симметрии: аромат симметрии обретает число. Математическая теория симметрии, в которой этот аромат отвердевает в точных определениях, называется теорией групп . Название этой теории возникло из того факта, что преобразования симметрии, о которых мы говорили, образуют множества операций, которые в математике называются группами. Вообще говоря, группа состоит из множества элементов и правила их комбинирования, такого, что комбинация любой пары элементов тоже является элементом этого множества. Мы можем увидеть, как преобразования симметрии формируют группу, снова представив себе куб. Предположим, я последовательно провожу два действия, поворачивая куб на 90° вокруг одной из осей, перпендикулярных грани, а затем вращая получившийся куб на 120° вокруг диагональной оси. Результат оказывается таким же, каким бы он был, если бы я повернул куб на 120° вокруг одной из других диагональных осей, поэтому эти два последовательно выполненных преобразования эквивалентны одному преобразованию симметрии. Это верно для всех преобразований симметрии куба, поэтому эти преобразования образуют группу. Группам преобразований симметрии для различных фигур даны названия. Например, огромная группа симметрии сферы называется SO(3). Позже мы встретим другие группы с названиями типа SU(2) и SU(3). — 131 —
|