Вот лучшие из типичных процессов, которые я обнаружил. 1. Сначала не было заметно, что человек решает задачу. Затем: «При заданной последовательности чисел, которые нужно сложить, конечно, правильно складывать их в порядке следования — но это так утомительно». Вдруг: «Это не просто любая последовательность; числа последовательно возрастают, шаг за шагом, — этот факт может... он должен иметь какое-то отношение к сумме. Но как эти две вещи связаны друг с другом — форма последовательности и ее сумма, — какова внутренняя связь между ними, остается неясным; я каким-то образом чувствую это, но не могу это понять». Через некоторое время: «У ряда есть направление возрастания. У суммы нет направления. Так вот: возрастание слева направо связано с соответствующим убыванием справа налево! Этот факт должен иметь отношение к сумме. ? все больше и больше; ? все меньше и меньше — в той же пропорции. Если двигаться слева направо, от первого числа ко второму, то увеличение будет равно единице; если двигаться справа налево, от последнего числа к предпоследнему, то уменьшение будет равно единице. Следовательно, сумма первого и последнего числа должна быть той же, что и сумма следующей внутренней пары. И это должно быть так всюду!» «Остается только ответить на вопрос: сколько таких пар? Очевидно, что число пар равно половине всех чисел, следовательно, равно половине последнего числа». В сущности, здесь происходит перегруппировка, реорганизация ряда в свете данной задачи. Это не слепая перегруппировка, она естественно возникает по мере того, как испытуемый старается постичь внутреннюю связь 143 между суммой ряда и его структурой. В этом процессе различные элементы явно приобретают новый смысл, новое функциональное значение. 9 теперь рассматривается не как 8+ 1, а как 10—1, и т. д. Если подобным образом приходят к общей формуле то рассматривают ее члены в свете такой структуры: (n+1) представляет величину пары, число пар. Но многие знающие только формулу, подходят к ней совершенно слепо. Для них все формулы попросту эквивалентны 1. Для них, по-видимому, оба n означают одно и то же. Они не осознают, что в случае первой формулы n в выражении n+1 является одним из членов пары, тогда как n в означает число членов ряда, определяющее число пар. Конечно, эти четыре формулы приводят к одному и тому же конечному результату и являются в некотором смысле эквивалентными, но психологически они не эквивалентны 2. В действительности они различны и с логической точки зрения, если рассматривать их в отношении их формы и функции, а не только в терминах внешней эквивалентности. Конечно, это логический вопрос, но только при условии, что из логики не исключается функциональное значение членов, генетический вопрос, вопрос подхода к формуле — вопрос осмысленного нахождения или понимания формулы. — 99 —
|