Рис. 10 7.В приводимых здесь фигурах A-фигуры, если рассматривать их по частям, сильнее отличаются от первоначальной фигуры, чем B-фигуры. Поэтому простая ссылка на «знакомость», очевидно, не может служить объяснением позитивных реакций — решения в A-случаях и отказа от решения в B-случаях. Наши наблюдения в опытах с А — B-парами уже содержали примеры экспериментального анализа. Хотя задача кажется достаточно простой, на классных занятиях иногда встречаешься с глупыми ответами. 8.На следующем этапе экспериментального анализа вместо одной фигуры давались два подвижных твердых тела. Они могли быть отделены или примыкать друг к другу в различных положениях: А Рис. 11 47 И в этом случае возможны — и иногда встречаются глупые ответы. 9. Для того чтобы уяснить возникающие здесь теоретические вопросы, полезно рассмотреть крайние случаи. Рассмотрим следующую глупую реакцию. Рис. 12Рис. 13 Ученика учат доказательству теоремы о площади параллелограмма с помощью фигуры, начерченной на миллиметровой бумаге. Проводятся дополнительные линии. Сторона а оказывается равной 5 дюймам, длина отрезка с равна 3 дюймам. Учитель говорит: «Посмотри! Из каждого верхнего угла я опускаю перпендикуляр длиной в 4 дюйма; я продолжаю линию основания вправо на 3 дюйма, ты можешь ее измерить». Через некоторое время дается другой пример — параллелограмм с другими размерами. Допустим, что ученик отвлекся, возможно, на экспериментатора, или подумал о предстоящей игре или о том, где сейчас находится его мама; допустим, что он повторяет про себя: «Четыре дюйма вниз, три дюйма вправо» — и робко чертит фигуру, показанную на рис. 13. Когда его спрашивают, удалось ли ему достигнуть цели— определить площадь, он отвечает: «Нет», но пока что не может продвинуться дальше. Сам я не сталкивался с таким ответом, но он вполне возможен. Как известно учителям, так происходит в случаях более сложных структур. Очевидно, что это крайний случай B-реакцпи — слепое, игнорирующее контекст подражание тому, что делал учитель. Каждому понятно, чем плохо такое подражание. Но что оно означает с теоретической точки зрения? Можно сказать: «Этот ребенок не смог должным образом при- 48 менить выученный материал к новой ситуации». Но что значит применить «должным образом»? Или можно сказать: «Ясно, что в этом случае отсутствует обобщение» — и покончить с проблемой как с решенной. Но решена ли она действительно? А как быть с глупыми обобщениями, которые остаются тем не менее обобщениями? А что если ребенок обобщит описанный выше пример так (правда, я не встречал таких случаев): «Перпендикуляры должны быть на один дюйм длиннее продолжения основания», или: «Длина перпендикуляра должна выражаться четным числом» и т. д. — и что если он будет соответствующим образом действовать? — 33 —
|