Итак, что же побудило Калаби выделить кэлеровы многообразия как одни из наиболее интересных? Для того чтобы ответить на этот вопрос, следует рассмотреть все возможные варианты. Если требовать полной строгости, можно настаивать, к примеру, на том, чтобы многообразия были совершенно плоскими. Но совершенно плоскими являются только те компактные многообразия, которые имеют форму бубликов, торов и других близких к ним объектов, — что остается верным для любых размерностей, начиная от двух и выше. Тороидальные объекты просты для изучения, но их количество ограничено. Математикам интереснее исследовать более разнообразные объекты, дающие им более широкий спектр возможностей. С другой стороны, требования для причисления многообразий к категории эрмитовых слишком слабы — следовательно, число возможных объектов чрезвычайно велико. Кэлеровы многообразия, лежащие между эрмитовыми и плоскими, имеют как раз такой набор свойств, который нужен геометрам. Их структура достаточно развита, чтобы упростить работу с ними, но не настолько, чтобы ограничить математика в выборе многообразия, удовлетворяющего его спецификациям. Другой причиной внимания к кэлеровым многообразиям стала возможность использования для их исследования методов, введенных Риманом, которые впоследствии использовал Эйнштейн. Эти методы работают на кэлеровых многообразиях, представляющих собой ограниченный класс эрмитовых многообразий, но в целом к эрмитовым многообразиям неприменимы. Мы крайне заинтересованы в возможности использования данных методов, поскольку их надежность была проверена еще в процессе разработки самим Риманом, кроме того, математики имели более столетия на их дальнейшее усовершенствование. Все это делает кэлеровы многообразия весьма привлекательным выбором, поскольку мы по сути уже имеем на руках технологию работы с ними. Но и это еще не все. Данные многообразия заинтересовали Калаби из-за тех типов симметрии, которыми они обладают. Кэлеровы многообразия, как и все эрмитовы многообразия, обладают вращательной симметрией при умножении векторов на их поверхности на мнимую единицу i . Для случая одного комплексного измерения точки описываются парой чисел (a, b) , взятой из выражения a + bi . Допустим, что координаты (a, b) определяют тангенциальный вектор, выходящий из начала координат. При умножении вектора на i его длина сохраняется, хотя сам вектор поворачивается на 90 градусов. Чтобы посмотреть на это вращение в действии, возьмем некую точку (a, b) или a + bi . Умножение на i даст в результате ia - b или, что эквивалентно, -b + ia , что соответствует новой точке (-b, a) на комплексной плоскости, определяющей вектор, ортогональный исходному и имеющий одинаковую с ним длину. — 85 —
|