Теория струн и скрытые измерения Вселенной

Страница: 1 ... 169170171172173174175176177178179 ... 302

«Можно создавать физические теории, которые интересны математикам, но в конечном счете, мне хотелось бы понять реальный мир», — говорит Фолкер Браун, физик из Дублинского института перспективных исследований.[155] В нашей попытке связать теорию струн и многообразия Калаби-Яу с реальным миром очевидной точкой сравнения является физика элементарных частиц.

Стандартная модель, которая описывает частицы материи и частицы — переносчики взаимодействий, движущиеся между ними, является одной из самых успешных теорий всех времен, но она не является учением о природе по ряду отношений. Во-первых, эта модель имеет около двадцати свободных параметров, таких как массы электронов и кварков, которые модель не способна предсказать. Эти величины необходимо вводить «вручную», что ставит многих ученых-теоретиков в тупик. Мы не знаем, откуда берутся эти числа, и ни одно из них, похоже, не находит логического математического обоснования. Струнные теоретики надеются найти математическое обоснование с единственным свободным параметром, кроме напряжения струн или линейной плотности энергии, который был бы связан с геометрией пространства. Силы и частицы при выборе геометрии должны быть полностью зафиксированы. Вышеупомянутая статья 1985 года Филиппа Канделаса, Гари Горовица, Эндрю Строминджера и Эдварда Виттена (см. шестую главу) «показывает, что можно свести все ключевые моменты воедино и получить мир, который выглядит, по крайней мере, в первом приближении, как Стандартная модель», — утверждает Канделас. — «Тот факт, что вы можете это сделать в теории, которая включает гравитацию, вызвал большой интерес к теории струн».[156] Один из успехов модели Канделаса и других ученых заключается в том, что она вводит понятие хиральных фермионов — особенности Стандартной модели, в соответствии с которой каждая материальная частица обладает своего рода «доминированием одной из рук»: леворукая версия отличается от ее праворукого зеркального отображения. Как мы видели ранее, эта модель также подразделяет элементарные частицы на четыре семейства, или поколения, а не на три, как Стандартная модель. Хотя эти числа и отличаются на единицу, Канделас утверждает, что «главное было показать, что можно получить различные поколения, то есть повторяемую структуру, наблюдаемую в Стандартной модели».[157] Строминджер придерживался тех же оптимистических взглядов, называя новаторские компактификации Калаби-Яу «важным скачком от базовых принципов теории струн до чего-то близкого к миру, в котором мы живем. Это похоже на игру в баскетбол, когда мяч, брошенный игроком с противоположного конца поля, попадает в корзину, — отмечает он. — Мы вплотную приблизились к пространству всех явлений, которые, возможно, могли бы произойти во Вселенной. Но нам хочется большего: нам хочется найти нечто не просто более-менее верное, а безусловно верное».[158] Примерно через год Брайан Грин с коллегами сделали шаг вперед, создав модель, которая давала три поколения, так необходимые для наших теорий, хиральные фермионы, правильное значение суперсимметрии, которое мы обозначаем, как N = 1, нейтрино с некоторой массой (что хорошо), но не слишком большой (что еще лучше); в ней также получались поля, связанные с взаимодействиями Стандартной модели (сильным, слабым и электромагнитным). Возможно, самым большим недостатком этой модели являлось наличие некоторых нежелательных дополнительных частиц, которые не были частью Стандартной модели и от которых следовало избавиться тем или иным способом. Что касается плюсов, то я был поражен простотой метода: фактически все, что надо было сделать авторам модели, — это «выбрать» многообразие Калаби-Яу, причем именно то, которое подведет нас вплотную к получению Стандартной модели. Хотя за прошедшие десятилетия наблюдается значительный прогресс в ряде областей, теория струн и струнные теоретики все еще до конца не поняли Стандартную модель. Даже с высоты наших сегодняшних познаний мы не уверены, может ли теория струн воспроизвести Стандартную модель.

— 174 —
Страница: 1 ... 169170171172173174175176177178179 ... 302