Теория струн и скрытые измерения Вселенной

Страница: 1 ... 99100101102103104105106107108109 ... 302

Как же это сделать? Представим, что над Тихим океаном была запущена ракета, которая приземлилась в радиусе ста миль от атолла Бикини. Это дает нам некоторое представление о том, где ракета может быть, другими словами — ее общую позицию, но мы хотели бы знать больше, например ее скорость, или ее ускорение, или как это ускорение изменялось в течение полета. Это можно сделать при помощи дифференциального исчисления — путем взятия первой, второй и третьей производных от функции, описывающей зависимость положения ракеты от времени. С таким же успехом можно брать производные и более высоких порядков, но для эллиптических уравнений второго порядка того типа, которым я занимаюсь, третьей производной вполне хватает.

Одного лишь знания производных функции недостаточно, хотя задача по их нахождению сама по себе может быть чрезвычайно трудоемкой. Кроме того, производные нужно «контролировать». Иными словами, необходимо установить для них границы — удостовериться, что они не могут быть ни чрезвычайно велики, ни чрезвычайно малы. Только в этом случае полученные решения будут «стабильны» — то есть не будут бесконтрольно раздуваться, тем самым дисквалифицируя себя как решения и разрушая наши надежды на них. Итак, взяв для начала нулевую производную — то есть исходную функцию, описывающую изменение положения ракеты с течением времени, мы устанавливаем для нее наличие верхних и нижних границ — иными словами, делаем оценки, показывающие, что решение по крайней мере возможно. Та же самая операция проводится для всех производных более высоких порядков, что позволяет удостовериться в том, что они не являются ни бесконечно большими, ни бесконечно малыми, а функции, их описывающие, не флуктуируют совершенно беспорядочным образом. Это позволяет априори оценить скорость, ускорение, зависимость ускорения от времени и т. д. Если мы можем таким образом проверить все производные от нулевой до третьей, значит, у нас есть хороший способ оценить уравнение в целом и приличный шанс найти его решение. Подобный процесс оценки и доказательства того, что оценочные данные сами по себе находятся под контролем, как правило, представляют самую сложную часть всего процесса.

Итак, в конце концов, все сводится к оценкам. Есть что-то ироническое в моем признании их актуальности для решения проблемы, с которой я столкнулся. Помню, когда я впервые попал в Беркли, в коридоре математического факультета я столкнулся с двумя постдоками из Италии. Они прыгали с радостными криками. На мой вопрос о том, что произошло, они ответили, что им только что удалось получить приближенную оценку. Когда же я спросил их о том, что это такое — оценка, они посмотрели на меня как на полного невежду, непонятно как попавшего в это здание. Именно с этого момента я пытался узнать как можно больше об априорных оценках. Калаби получил такой же урок несколькими десятилетиями ранее от своего друга и соратника Луиса Ниренберга: «Повторяй за мной, — говорил тогда Ниренберг, — без априорных оценок ты никогда не сможешь решать дифференциальные уравнения в частных производных!»[50] А в начале 1950-х Калаби переписывался с Эндрю Вейлем по поводу своей гипотезы. Вейль, который полагал, что математические технологии того времени просто не созрели для нахождения решения, спрашивал Калаби: «Как вы собираетесь получить оценки?»[51]

— 104 —
Страница: 1 ... 99100101102103104105106107108109 ... 302