В качестве простейшего примера из повседневной жизни, поясняющего идеи Калаби, рассмотрим плоский пластичный лист с фиксированным периметром. Предположим теперь, что этот лист либо растягивается, либо сжимается. Вопрос в следующем: как в процессе сжатия или растяжения изменяется форма листа? Растяжение средней части листа приводит к возникновению на нем выпуклости с положительной кривизной, и соответствующее решение уравнения Монжа-Ампера будет принадлежать к эллиптическому типу. И наоборот, если внутренняя часть листа сжимается, то поверхность приобретает форму седла с отрицательной кривизной во всех своих точках, — решение будет гиперболическим . Наконец, если кривизна окажется равной нулю во всех точках, то можно ожидать решения параболического типа. Всем трем случаям будет соответствовать одно и то же уравнение Монжа-Ампера, но, как указал Калаби, «решать его необходимо совершенно разными методами».[47] Из трех перечисленных типов дифференциальных уравнений лучше всего мы умеем решать и анализировать уравнения эллиптического типа. Эллиптические уравнения относятся к простейшему — стационарному случаю, в котором рассматриваемые объекты неподвижны в пространстве и времени. Они описывают физические системы, не изменяющиеся с течением времени, такие как барабан, мембрана которого после остановки колебаний вернулась в состояние равновесия. Кроме того, решения эллиптических уравнений считаются наиболее простыми для понимания, поскольку соответствующие им графики являются гладкими и при их анализе проблемы с сингулярностями возникают весьма редко, хотя появление сингулярностей в решениях некоторых нелинейных эллиптических уравнений не исключено. Гиперболические дифференциальные уравнения описывают процессы, подобные волнам или колебаниям, которые никогда не достигают равновесного состояния. Решения таких уравнений, в отличие от решений эллиптических, обычно обладают сингулярностями, и работать с ними намного сложнее. Если с линейными гиперболическими уравнениями, в которых изменение одной переменной приводит к пропорциональному изменению другой, мы уже научились управляться достаточно хорошо, то каких-либо эффективных инструментов для работы с нелинейными гиперболическими уравнениями, а именно для управления возникающими в них сингулярностями, попросту не существует. Параболические уравнения лежат примерно где-то посередине. Они описывают стабильные физические системы, такие как колеблющаяся барабанная мембрана, которые только стремятся к равновесию, но на данный момент еще его не достигли, что привносит в физическую картину зависимость от времени. Эти уравнения менее склонны к сингулярностям, чем гиперболические, и сгладить их гораздо легче, что с точки зрения сложности решения опять-таки ставит их где-то между эллиптическими и гиперболическими. — 100 —
|