Теория струн и скрытые измерения Вселенной

Страница: 1 ... 100101102103104105106107108109110 ... 302

Два десятилетия спустя, когда я включился в игру, сама проблема не изменилась. Она по-прежнему оставалась невероятно сложной, хотя математический аппарат за это время успел развиться настолько, что решение стало в принципе возможным. Проблема состояла лишь в том, чтобы найти верный подход или, по крайней мере, создать необходимую точку опоры. Так что я подобрал более простое уравнение, а затем постарался показать, что его решение может в конечном счете «деформироваться» в решение более сложного уравнения.

Предположим, что вам нужно решить уравнение f(x) = x2-x при f(x) = 0. Подставим для начала x = 2 и убедимся, что этот вариант не подходит: f(2) = 2 , а не 0 . Тем не менее у нас теперь есть решение, если не для исходного уравнения, то для чего-то подобного. Перепишем первоначальное уравнение как f(x) = 2t . Для случая t = 1 его решение уже известно (x = 2 ), и теперь задача состоит в том, чтобы решить его при t = 0 . Как же это сделать? Рассмотрим параметр t . Что произойдет, если немного изменить значение t , так, чтобы оно уже не было равно точно 1 , но все же оставалось близким к единице? Интуиция подсказывает, что если t будет близко к 1, значение f(t) будет близко к 2. Это предположение оказывается верным для большинства случаев, а это означает, что при t близком к 1 мы можем решить уравнение.

Теперь будем уменьшать t , так чтобы рано или поздно его значение достигло нуля и в результате мы получили исходное уравнение. Выбирая все меньшие и меньшие значения t , будем записывать для каждого из них соответствующие решения уравнения. В результате возникнет последовательность точек, в которых решение уравнения существует, и каждой из этих точек соответствует собственное значение x , которое я буду называть xi . Смысл этого упражнения заключается в том, чтобы доказать, что последовательность xi сходится к определенному значению. Для этого нужно показать, что xi ограниченно и не может возрастать до бесконечности, потому что для любой ограниченной последовательности по крайней мере некоторые ее части должны сходиться. Показав сходимость xi , мы тем самым покажем возможность уменьшения величины t до 0 без столкновения с какими-либо непреодолимыми препятствиями. И если мы сможем это сделать, мы тем самым решим уравнение, показав, что случай с t = 0 также имеет решение. Иными словами, мы покажем, что решение исходного уравнения x2-х=0 должно существовать.

Именно такие рассуждения я использовал при доказательстве гипотезы Калаби. Ключевым моментом доказательства стала необходимость показать, что xi представляют собой сходящуюся последовательность. Конечно, уравнение, лежащее в основе гипотезы Калаби, было намного сложнее, чем x2-х=0 . В этом уравнении в роли x выступало не число, а функция, что безмерно увеличивало сложность, поскольку сходимость последовательности функций доказать, как правило, весьма и весьма непросто.

— 105 —
Страница: 1 ... 100101102103104105106107108109110 ... 302