Итак, мы снова разбиваем большую проблему на более мелкие фрагменты. Уравнение, входящее в гипотезу Калаби, является эллиптическим уравнением второго порядка, и для решения подобных уравнений необходимо сделать оценки нулевого, первого, второго и третьего порядков. Сделав эти оценки и доказав, что они сходятся к желаемому решению, можно считать гипотезу доказанной. Это легче сказать, чем сделать, поскольку нахождение этих четырех оценок представляет собой отнюдь не простую задачу. Думаю, именно за способность делать такие вещи нас и ценят. Впрочем этим наша с Ченгом подготовка к наступлению на уравнения Монжа-Ампера не ограничилась. Мы начали работу над так называемой проблемой Дирихле, названной в честь немецкого математика Лежёна Дирихле. Эта проблема относилась к категории краевых задач, решение которых, как правило, представляет собой первый этап решения эллиптических дифференциальных уравнений. Примером краевой задачи может служить проблема Плато, затронутая в третьей главе, которую обычно поясняют на примере мыльных пленок и которая утверждает, что для произвольного замкнутого контура всегда можно найти минимальную поверхность, ограниченную этим контуром. Каждая точка такой поверхности в действительности является решением определенного дифференциального уравнения. Иными словами, вопрос сводится к следующему: если известно граничное решение такого уравнения, то можно ли найти поверхность в целом и таким образом полностью решить уравнение? Несмотря на то что гипотеза Калаби не является краевой задачей, мы с Ченгом нуждались в проверке методов, которые могли впоследствии пригодиться нам в работе над комплексными уравнениями Монжа-Ампера типа того, что фигурирует в гипотезе Калаби. Для этого мы занялись решением задачи Дирихле в определенных областях комплексных евклидовых пространств. Решить задачу Дирихле можно при помощи уже упомянутых ранее шагов, оценивая значения производных нулевого, первого, второго и третьего порядка для точек, лежащих на границе. Но мы должны сделать такие же оценки и для внутренних точек поверхности, поскольку рассматриваемый «мыльный пузырь» может иметь разрывы, сингулярности и другие отклонения от гладкости. Таким образом, общее число оценок равно восьми. Рис. 5.3. Математик Луис Ниренберг К началу 1974 года Калаби и Ниренберг, также работавшие над задачей Дирихле, одновременно с нами получили оценку второго порядка. Нахождение оценки нулевого порядка оказалось весьма простой задачей. Ну а оценку первого порядка можно вывести из оценок нулевого и второго порядков. Итак, оставалась только оценка третьего порядка, нахождение которой и открывало путь к решению задачи Дирихле. — 106 —
|