В «современной» теоретической физике, в частности, в ОТО, априорное принятие какой-либо локальной калибровочной симметрии требует затем введения определенного конкретного взаимодействия (гравитационного). В октетной физике экспериментальное обнаружение определенной локальной калибровочной симметрии (или асимметрии) приводит к апостериорным теориям взаимодействий. Таким образом, на первый план выступают не воображаемые взаимодействия с целью подогнать их под наблюдаемые частные симметрии, но построение картины взаимодействий на эмпирическом фундаменте наиболее общих симметрий и нарушения или отсутствия частных симметрий. (5) Вид функции h(t) получен на первом шаге рекуррентного процесса в приближении ?Н/mи2u4 = 0. Далее, учитывая уравнение ?Т??t = ?Н/mи2u4 + ?, полученная функция h(t) подставляется в ? и Н, затем определяется новая, скорректированная зависимость Т = Т(t, x, y, z, px, py, pz) и решается 4-е уравнение системы (1), и т.д. (6) Уравнения 1 и 5 системы (3) в [3] в наших приближениях допускают разрешение относительно функции h(t). Дифференцируя пятое уравнение по t и подставляя в него значение ?Т??t из первого уравнения, придем к интегро-дифференциальному бигармоническому уравнению: , которое существенно нелинейно (то есть имеет автосолитонные решения и не только их). В развернутом виде после некоторых сокращений , где ? = – (?2/2mи)? – ?/r + h(t), ? = 6 – показатель необратимости параметрического времени t, зависящий от размерностей пространств Vr ,Vр … (7) Аксиоматика классической квантовой механики (в ее центральных утверждениях) выбирается независимо от аксиоматики ОТО. Квантовать ОТО – это скрещивать ужа и ежа, или «более научно»: это подобно тому, как в геоцентрической системе Птолемея объясняется реальное движение планет и Солнца «нанизыванием» на их круговые орбиты все новых «сфер обращения». В «квантовой гравитации», базирующейся на паллиативной квантовой механике и ассоциативной теории сингулярной точки А.Эйнштейна, нет фундаментальной объединяющей идеи, то есть содержательного основания. Над тяжелым мышлением механистических квантистов все еще висит обоюдоострый «дамоклов меч»: 1) классической механики с ее законами сохранения; 2) принципа наименьшего действия. Более того, уравнение Шредингера, являющееся, в сущности, расщеплением над комплексным полем С очень частного случая уравнения Колмогорова – Чепмена в теории марковских процессов, построено по аналогии с приближением геометрической оптики на базе аксиомы «отсутствия памяти» системы: ????t ~ a?, то есть принимается, что изменение волновой функции определяется только ее значением в настоящий момент времени. Тем самым вводится этакая «броуновская забывчивость» для мира, инертная масса в котором является синонимом памяти. Все очарование таких теорий состоит, по-видимому, в том, что сначала в них постулируется отсутствие способности искать и находить причинно-следственные связи во времени, а затем на основе их теорем удовлетворяются глубинные потребности субъекта в тайнах и волнующих душу «вероятностных» гаданиях. При этом «расщепленная вероятность» – волновая функция используется не в качестве основы для изучения потенциала упругих натяжений квантовой субстанции, а как цифровой гороскоп. Нормировка волновой функции упускает фазовые множители и, кроме того, нивелирует амплитуду гармонических потенциалов: нет ни порядка наступления событий, ни интенсивности перехода между ними – метафизическая данность мира, как таковая. Но даже в постгамильтоновой механике гравитационную и инертную массы необходимо рассматривать как результат эволюции материи от начала ее рождения до современной космологической эпохи. Между тем «квантовать» (вводом волновой функции под действие обобщенного оператора Гамильтона и под гамильтониан) уравнения октетной физики в общем случае не надо: волновой характер движения в них заложен уже при рождении материи, см. уравнения (4). — 54 —
|