(4) Если изучается микро- или мегаобъект и сохраняется отброшенное слагаемое первого уравнения системы (4) в [3], то показатель асимметрии физического мира будет иметь вид: ? = ?Н/mи2u4 + ?, а постоянная С может изменить свою зависимость от обобщенных координат; в этом случае появляются дополнительные нюансы в теориях необратимости параметра t, нечетности Vr и несохранения РТ-четности. Данная асимметрия «поддерживается автоматиччески»: при отражениях t ? – t, xs ? – xs меняется вид систем уравнений типа (3, 4) в [3], что можно связать с необходимостью «брать энергетический барьер», обусловленный топологией. Вообще, предполагается, что существует два взаимодополнительных подхода к интерпретации решений систем уравнений – первый: а) координаты вектора r в Vr (и вектора p в Vp) относятся к собственно пространству Vr (к Vр), а не к какому-либо конкретному (пробному) телу в нем (в Vр); б) компоненты вектора r координатного пространства Vr (или вектора импульса р в Vp) относятся к материальному (пробному) телу, «помещенному» в пространство Vr (в Vр), и в этом случае механика имеет дело с проявленной и «сгустившейся» материей, с конденсатом; второй: по возможности в исследованиях решений систем дифференциальных уравнений устраняется представление о ковариантности физических законов, связанной с линейными преобразованиями обобщенных координат (кроме, возможно, отражений). Это допускается, во-первых, потому, что в природе, по большому счету, нет ковариантности, особенно в том виде, который широко обсуждается при построении теорий над множествами ассоциативных элементов (любые преобразования координат – это умозрительная фикция; в объективном физическом мире для осуществления этой фикции требуются определенные усилия и мощность, но все реальные действия в общем случае некоммутативны и неассоциативны, то есть теорема Э.Нетер об инвариантах, базирующаяся на теоретико-групповом подходе к проблеме геометризации физики, в общем случае не выполняется), а во-вторых – по причине того, что система (всех) координат мысленно ориентирована, растянута, деформирована, вращается, если это допустимо по смыслу задачи, подвергается переносам с изменяющимся ускорением (и т.д.) произвольным образом сама еще до «привнесения в нее» объектов изучения. Зато объекты изучения в «зафиксированной» произвольно выбранной системе координат (системе отсчета) «ведут себя» произвольно, но по установленным правилам поведения. Таким образом, меняются и выводы о симметрии или асимметрии состояний и процессов, описываемых с помощью представлений квазигрупп, и выводы о плодотворности идеи ковариантности. — 53 —
|