где u ? ?, ,,,,,– обобщенные операторы по координатам и импульсам Дивергенции, Ротора, Градиента.
Уравнения для медленных процессов (частиц):
?T/?t = ?H / m2u4,
?А/?t = – ?p / m2u2 {+H }
?H/?t = {– ?2?Т },
?P/?t = ?2?A / u2 {–H}, (9)
где u ? 0, а операторы и функции в фигурных скобках – расширение теории.
ПРИМЕЧАНИЯ к ТРЕМ ЧАСТЯМ СТАТЬИ
- Термины «октетная физика», «биоктетная механика» и т.д. вводятся на тех же основаниях, что и термины «математическая физика», «статистическая физика», «фрактальная физика» и т.п., – за определением в терминах стоит соответствующий математический аппарат (см. [1 – 5]).
- Гиперсфера U*U в О задана уравнением: U02 – U12 – … – U72 = R 2. Для существования уравнений движения и состояний физики О необходимо постоянство размеров и формы гиперсферы U 2, но не имеет значения, какие локальные натяжения, деформации, потоки и процессы имеются в 7-мерном касательном слое к U 2 в каждой ее «точке» или протекают глобально, на всем ее «глобусе» (условие существования мира явлений – неизменная сущность отношения «субъект – объект»).
- Число ? = 6 имеет топологическое происхождение, так как является суммой размерностей координатного пространства Vr и импульсного пространства Vp. То есть как только дополнительно к измерению времени t «появляются» другие, пространственные измерения, так сразу же возникает явление необратимости t. В биоктетной механике наряду с Vr , Vр рассматриваются пространство момента импульса Vrр и пространство момента силы Vrf , и поэтому ? = 12. Такое «теоретическое» повышение степени необратимости времени связано с учетом явлений поглощения и испускания различной радиации при изменении ускорения и ориентации частиц. Поэтому при росте массы (4-е уравнение в (1)) в поле тяжести U = – ?/r при t > 0 имеем (I): ?h(t)??t = (–?/r + h(t)) (C + ?t), а при t < 0 будет (II): ?h(–?)??? = (?/r – h(–?)) (C – ??), ? > 0. Отсюда видно, что при левой ориентации аксиальной составляющей в С первое уравнение энергетически более выгодное (по модулю изменений), чем второе. То есть физическая система стремится к нарушению РТ-четности. При t > 0 и t ? 0 излучению энергетически выгодно иметь левую ориентацию (ср. с преобладанием левого нейтрино в солнечной радиации, что указывает на креатистское происхождение звезд и на источник их энергии в провремени, см. также об источнике энергии звезд сообщение Н.А.Козырева [6]).
- Если изучается микро- или мегаобъект и сохраняется отброшенное слагаемое первого уравнения системы (4) в [3], то показатель асимметрии физического мира будет иметь вид: ? = ?Н/mи2u4 + ?, а постоянная С может изменить свою зависимость от обобщенных координат; в этом случае появляются дополнительные нюансы в теориях необратимости параметра t, нечетности Vr и несохранения РТ-четности. Данная асимметрия «поддерживается автоматически»: при отражениях t ? – t, xs ? – xs меняется вид систем уравнений типа (3, 4) в [3], что можно связать с необходимостью «брать энергетический барьер», обусловленный нарушением геометрии. Вообще, предполагается, что существует два взаимодополнительных подхода к интерпретации решений систем уравнений – первый: а) координаты вектора r в Vr (и вектора p в Vp) относятся к собственно пространству Vr (к Vр), а не к какому-либо конкретному (пробному) телу в нем (в Vр); б) компоненты вектора r координатного пространства Vr (или вектора импульса р в Vp) относятся к материальному (пробному) телу, «помещенному» в пространство Vr (в Vр), и в этом случае механика имеет дело с проявленной и «сгустившейся» материей, с конденсатом; второй: по возможности в исследованиях решений систем дифференциальных уравнений устраняется представление о ковариантности физических законов, связанной с линейными преобразованиями обобщенных координат (кроме, возможно, отражений). Это допускается, во-первых, потому, что в природе, по большому счету, нет ковариантности, особенно в том виде, который широко обсуждается при построении теорий над множествами ассоциативных элементов (любые преобразования координат – это умозрительная фикция; в объективном физическом мире для осуществления этой фикции требуются определенные усилия и мощность, но все реальные действия в общем случае некоммутативны и неассоциативны, то есть теорема Э.Нетер об инвариантах, базирующаяся на теоретико-групповом подходе к проблеме геометризации физики, в общем случае не выполняется), а во-вторых – по причине того, что система (всех) координат мысленно ориентирована, растянута, деформирована, вращается, если это допустимо по смыслу задачи, подвергается переносам с изменяющимся ускорением и так далее произвольным образом сама еще до «привнесения в нее» объектов изучения. Зато объекты изучения в «зафиксированной» произвольно выбранной системе координат (системе отсчета) «ведут себя» произвольно, но по установленным правилам поведения. Таким образом, меняются и выводы о симметрии или асимметрии состояний и процессов, описываемых с помощью представлений квазигрупп, и выводы о плодотворности идеи ковариантности.
- В «современной» теоретической физике, в частности в ОТО, априорное принятие какой-либо локальной калибровочной симметрии требует затем введения определенного конкретного взаимодействия (гравитационного). В октетной физике экспериментальное обнаружение определенной локальной калибровочной симметрии (или асимметрии) приводит к апостериорным теориям взаимодействий. Таким образом, на первый план выступают не воображаемые взаимодействия с целью подогнать их под фантастику частных симметрий, но построение картины взаимодействий на эмпирическом фундаменте наиболее общих симметрий и нарушения или отсутствия частных симметрий.
- Вид функции h(t) получен на первом шаге рекуррентного процесса в приближении ?Н/mи2u4 = 0. Далее, учитывая уравнение ?Т??t = ?Н/mи2u4 + ?, полученная функция h(t) подставляется в ? и Н, затем определяется новая, скорректированная зависимость Т = Т(t, x, y, z, px, py, pz) и решается 4-е уравнение системы, и т.д.
- Уравнения 1 и 5 системы (3) в [3] в наших приближениях допускают разрешение относительно функции h(t). Дифференцируя 5-е уравнение по t и подставляя в него значение ?Т??t из 1-го уравнения, придем к интегро-дифференциальному уравнению:
— 109 —
|