получим уравнение состояния системной термодинамики *** : Tds = u + pdv + Ada, где A = da/dt. Из этого вытекает, что системная физика является равновесной теорией. Поскольку из определенных вполне корректных предположений из * следует ***, а ds дефинирует состояние системы, то отсюда видно, что ПНД и лагранж-гамильтонов формализм в системном подходе – лишь частности. Относительно роли введенного понятия системной энтропии заметим, что уже в случае кватернионов скорость прямолинейного движения «точки» по инерции в фрактальном пространстве со временем падает по экспоненте (см. (2), с. 214 в [3]) до нуля (до минимальной скорости). Имеем dS = a’ds, где [a’] = 1эрг/(1см*1К), Т = a”(? – 1/?), где [a”] = 1K, а слагаемые справа в *** умножаются на константу a”’: [a”’] = 1эрг*1с/1см. Энтропия АТ1 является инвариантом квазигруппы SU(n, Q), экстремальна при отсутствии любых изменений, процессов и развития системы и минимальна при ее максимально интенсивных в рамках размерности гиперкомплексной системы процессах. Температура АТ2 равна нулю при отсутствии каких-либо процессов, максимальна (стремится к бесконечности) при процессах, максимально интенсивных в данной (изолированной) системе, и инвариантом относительно SU(n, Q) не является. В этом состоит макроскопическая сущность октетной и системной параметризации. Однако в последовательном подходе интервал должен иметь “разрывы”, обязанные несохранению числа частиц N макросистемы, количества ее микросостояний W и концентрации вещества ? в интенсивных процессах (например, причиной этого могут служить появление адронных струй, аннигиляция и другие реакции ЭЧ). Температура и энтропия в данном формализме не могут быть отрицательными величинами. Другие свойства величин, согласованных с определенными выше энтропией и температурой, можно получить из рассмотрения чисто гиперкомплексной части интервала. Решения системы уравнений биоктетной физики указывают на реверберацию автосолитона Метагалактики – без каких-либо предположений о том, что было до появления наблюдателя. То есть закон возрастания энтропии системной термодинамики содержится в аксиомах системной физики, в ее структуре, и связан с уменьшением амплитуды и с увеличением периода пульсаций проявленной части антропогенной вселенной [2]. Если температура и энтропия вводятся в системную термодинамику определениями, задающими их свойства на «границах применимости», то 1-е начало имеет то же статус, что и постулаты существования величин, входящих в интервал. Второе начало в системной термодинамике – теорема. Отсюда следует, что кроме параметрического времени t и семейства локальных времен {?} существует идея времени, связанная со структурой аксиом системной физики и эксплуатацией ее теоремы – закона возрастания энтропии. — 106 —
|