В определении через абстракцию определяемое выступает как нечто (х), которое остается инвариантным при некоей группе преобразований, без прямого определения того, что оно в своей специфичности есть. ' Об «определениях через абстракцию» см.: Weyl Hermann. Philosophic der Mathematik und der Naturwissenschaft. Handbuch der Philosophic. — Munchen und Berlin, 1927. — S. 9-10; 101-102. Принцип определения через абстракцию имелся уже у Лейбница. Он отчетливо сформулирован у Фреге (Frege). Определения через абстракцию сейчас широко применяются в математике и физике, в теоретическом естествознании (см. примеры дальше). Вместо того чтобы определить позитивное содержание понятия через внутренние закономерные соотношения сторон или свойств соответствующего явления и показать его инвариантность по отношению к признакам, от которых абстрагируются, при определении через абстракцию понятие характеризуется его независимостью (инвариантностью) по отношению к тому, от чего абстрагируются. Специфику этого и возможность другого, генетического, конструктивного пути можно уяснить себе на примере числа. Через абстракцию число определяется посредством равночисленности исчисляемых множеств. Другой путь его определения — конструктивный — осуществляется исходя из единицы по принципу полной индукции. При таком обосновании числа числа выступают в своих внутренних взаимоотношениях как упорядоченные множества, посредством которых при счете упорядочивается и исчисляемое. Каждое число определяет численность множества (а не наоборот, как при определении числа через абстракцию). При этом специально показывается, что результат счета не зависит от порядка, в котором он производится (таким образом инвариантность по отношению к несущественным внешним отношениям обосновывается исходя из закономерности внутренних отношений). Определение числа через равночисленность соотносимых множеств (при определении через абстракцию) скрыто предполагает упорядочение самих соотношений и, значит, соотносимых множеств. При определении через абстракцию утверждается определенность числа посредством равночисленных множеств, но этим не вводятся индивидуально определенные числа. При таком определении понятие является неким х, определенным лишь постольку, поскольку оно должно отвечать известным условиям — инвариантности при некоторых преобразованиях внешних по отношению к нему свойств, от которых понятие должно быть отвлечено; оно лишено каких-либо собственных («внутренних») определений (в переменную здесь таким образом превращают не то частное, внешнее, привходящее, от чего абстрагируют, а общее). Поэтому посредством определения через абстракцию при таком ее понимании создается «формальная» система, безразличная к внутреннему содержанию, к свойствам объектов, о которых идет речь. Поэтому, например, Вейль, вообще не стоящий на позициях формализма, говоря об определении через абстракцию, в этой связи заявляет: «Математику совершенно безразлично, что такое круги» (Es istfurden Mathematiker ganz gleichgultig, was Kreise sind)1. Ясно, что такое утверждение ведет к открытому формализму. Конечный смысл этого утверждения применительно к математике выразил Рассел в своем известном афоризме: «Математика это наука, в которой мы не знаем, ни о чем мы говорим, ни того, истинно лито, что мы утверждаем». (О второй части этого положения см. дальше.) — 128 —
|