Приведем доказательство несчетности множества всех положительных действительных чисел, не превосходящих единицу. Представим каждое из этих чисел в виде правильной бесконечной десятичной дроби, то есть дроби, начинающейся нулем перед запятой и такой, что в ней бесконечно много цифр, отличных от нуля. Тогда между числами рассматриваемого множества и дробями указанного вида установится взаимно однозначное соответствие (см. примечание 3; число 1 представляется как 0.999...). Доказательство ведется от противного. Предположим, что нам удалось произвести нумерацию всего множества этих чисел буквами с индексами, указывающими их порядковый номер: a1, a2, a3... ‑ Пусть, скажем, начало нумерации имеет вид (десятичные дроби мы записываем одну под другой): Наше допущение означает, что рассматриваемое множество чисел счетно. Однако легко построить число, принадлежащее рассматриваемому множеству, но никакого номера в нашей системе нумерации не имеющее. Напишем нуль и поставим после него запятую. Для определений первой цифры после запятой поступим следующим образом. Рассмотрим первую после запятой цифру в первой числе а1 и, если эта цифра выражает четное число, то в новое число впишем цифру 5, в противном случае впишет цифру 6. Чтобы определить вторую цифру после запятой нового числа, возьмем вторую цифру после запятой числа a2 и поступим по точно такому же правилу. Продолжая эту процедуру, то есть беря третью цифру после запятой, третьего числа, четвертую цифру после запятой четвертого числа и т. д., мы будем строить по указанному. правилу десятичные знаки некоторого числа A (в нашем примере его «начало» выглядит так: 0,5665 ...). Число a, очевидно, принадлежит к рассматриваемому множеству, ибо оно заключено между нулем и единицей. С другой стороны, оно не охвачено нашей нумерацией, так как отличается от любого из занумерованных чисел хотя бы в одном десятичном знаке, а именно – оно имеет другую цифру в том разряде, который «изготовлялся» по данному числу. Но выше предполагалось, что нашей нумерацией охвачены рее действительные числа. Мы пришли к противоречию. Значит, наше допущение неверно: множество всех положительных действительных чисел, не превосходящих единицу, не является счетным (такое множество называется несчетным) , и, следовательно, несчетным является и все рожество действительных чисел (строгое доказательство последнего утверждения, интуитивно очевидного, можно осуществить с помощью того же самого «диагонального» метода, которым мы воспользовались для установления более частного результата[76]). — 61 —
|