Но коль скоро возникла «множественная» установка, то должен был прийти человек, который постарался бы связать с идеей множества детально разработанную теоретическую конструкцию. Такой человек в урочный час и появился на математической сцене. Это был Георг Кантор (1845–1916).[75] Кантор исследовал свойства абстрактных множеств расклассифицировал множества в зависимости не от конкретной природы элементов, их составляющих, а от «количества» элементов множества. Поскольку речь идет в основном о бесконечных множествах, то проблема «величины» множества является далеко не тривиальной. Кантор разработал изящные способы сравнения множеств по величине и упорядочения множеств, введя центральное понятие своей теории – понятие мощности множества , которое есть некий аналог понятия количества элементов конечного множества. В наши задачи не входит изложение знаменитого Mengenlehre – учения о множествах, или, как принято говорить в русской традиции, теории множеств. Зарождение, расцвет, почти безраздельное господство и начало критики этой конструкции человеческого интеллекта могли бы послужить темой не одной книги. Но один из результатов Кантора понадобится нам в дальнейшем, и поэтому мы именно на его примере продемонстрируем тот тип рассуждений, который в конце концов привел к трудностям, явившись причиной «кризиса оснований математики», разразившегося на пороге нашего столетия. Рассмотрим множество целых положительных чисел 1, 2, 3, ... Оно, очевидно, бесконечно. Рассмотрим теперь множество (бесконечное) a1, a2, a3,... каких‑то элементов неизвестной природы. Интуитивно ясно, что второе множество имеет «столько же» элементов, сколько первое (слова «столько же» мы берем все же в кавычки, поскольку перед нами два бесконечных множества, дальние элементы которых мы никогда не сможем выписать), так как с каждым элементом аi можно взаимно‑однозначно сопоставить целое положительное число. Этим числом будет i – его номер. Всякое множество, элементы которого можно мыслить нумеруемыми натуральными числами, носит название счетного множества . Ясно, однако, что процесс этой нумерации (пересчета) не имеет конца. Поставим теперь проблему: всякое ли бесконечное множество счетно? «Здравый смысл» склоняет к положительному ответу: ведь каким бы ни было бесконечное множество, можно брать его элементы по одному и присваивать каждому из них определенный номер; так мы, как будто, можем дойти, до любого элемента; условие счетности выполняется. Однако Кантор доказал, что ‑ интуиция в этом волосе подводит. Он указал на множество действительных чисел как на пример множества, не являющегося счетным. — 60 —
|