Проиллюстрируем возникающую здесь ситуацию на примере. Как, скажем, может производиться разбиений области рациональных чисел, дающее сечение для числа е . Заметим предварительно, что при вычислении этого числа с наперед заданной точностью пользуются его представлением в виде ряда 1 + 1/1! + 1/2! + 1/3! ... Предположим что задано рациональное число R1 = 2,7182 и нужно отнести его к левому или правому классу. Для этого мы должны будем вычислить е с точностью, дающей не менее пяти знаков после запятой, что означает взятие в приведенном ряде девяти слагаемых. Суммирование их дает число 2,71828. Сравнивая R1 с этим числом, мы приходим к заключению, что R1 принадлежит к левому классу, поскольку к этому классу принадлежит любое конечное приближений числа е , найденное с помощью приведенного выше ряда (оно всегда меньше e , так как при прибавлении новых членов ряда мы только увеличиваем сумму). Легко сообразить, что если проверяемые числа будут достаточно "длинными"), фактическое осуществление подобной проверки станет невозможным не только для человека, но и для ЭВМ. Но это еще не все. Данный пример показывает, что для «фактического» осуществления разбиения, то есть «точного» выяснения вопроса, что же представляет собой сечение для е , нужно «пробежаться по бесконечности» – произвести неограниченно большое число процедур получения все возрастающих сумм указанного ряда. Пункт, второй. Если мы и построим сечения для каких‑то иррациональных чисел, давая для них правила отнесения к соответствующему (левому или правому) классу любого рационального числа, то эти сечения далеко не исчерпают всех иррациональных чисел. По существу, сечения можно дать только для ничтожной доли всех действительных чисел. Но тогда спрашивается: откуда же в нас возникает убеждение, что действительных чисел неизмеримо больше, чем осуществленных сечений? Если разобраться в этом, мы придем к выводу, что оно появляется как результат специфического акта воображения: перед нашим внутренним взором пробегают, вереницы бесконечных десятичных дробей Вейерштрасса, с каждой из которых связано некое сечение. Эти уязвимые для критики пункты подрывают теорию сечений – мы убеждаемся, что с нею, как и без нее, от бесконечностей никуда не уйдешь. Но она представляла собой важное методологическое достижение, учитывающее новые элементы научного видения математиков. Философской основой этого видения был так называемый математический платонизм. В своей знаменитой «теории идей» Платон утверждал, что чувственно воспринимаемые объекты есть лишь бледные копии идей («эйдосов»), существующих в неком идеальном мире. Эйдосы существуют там более реально, чем существуют в материальном мире обычные вещи, поскольку Зычные вещи со временем разрушаются и исчезают, а идеи вечны и поскольку вещи имеют дефекты и изъяны, а идеи совершенны. Исходя из этого основного положения, Платон обсуждал свойства идей и их отношение к вещам, пользуясь для этого формальной логикой естественного языка. — 57 —
|