Учитель поощряет детей за хорошую работу и задает аналогичный вопрос про «кружочки с треугольниками». «А теперь, - говорит учитель, - я задам вам трудный вопрос. Чего больше в магазине: обуви или детской обуви?» Ответы могут быть разные. Некоторые дети ответят правильно. Но найдутся и такие, которые дадут ложные ответы. Если окажется, что количество пар взрослой и детской обуви одинаковое, то ученики могут сравнить детскую обувь со взрослой и ответить: «Поровну». Учитель предлагает детям работать с метками и всем вместе найти правильный ответ. Они приходят к выводу: когда речь идет об обуви в магазине, то надо учитывать все метки. Учитель объединяет дугой все множество. Когда же речь идет о детской обуви, то учитывается только часть меток. Можно предложить ученикам все метки, обозначающие детскую обувь, расположить в начале ряда. Учитель делает то же самое на доске и обводит детскую обувь дугой снизу. Теперь дети наглядно видят, что всей обуви больше, чем детской. Учитель еще раз специально показывает, что «вся обувь» - это все метки, а «детская обувь» - только часть их. Аналогичную работу можно проделать с обувью для взрослых. Дети с удовольствием составляют также «Учетную карту лесника», где надо разместить разных птиц или зверей. На заключительном этапе работы обязательно проделывается работа по сравнению объема родовых и видовых понятий. Учитель, в частности, может предложить детям определить, какие из названных предложений правильные, а какие нет. Например: «Ель - это дерево. Дерево - это ель»; «Медведь - это лесной зверь. Лесной зверь - это медведь» и т.д. Каждый раз ученики должны объяснить, почему одно из предложений является неверным. На внешнеречевом этапе задания можно давать уже без средств материализации, в чисто речевом плане. (Разумеется, не исключено, что дети будут мысленно представлять метки. Но это уже большой шаг вперед по сравнению с материализованными действиями.) Использовать надо хорошо знакомые детям предметы: ложки и чайные ложки, фрукты и яблоки, одежда и пальто. На заключительных этапах работы можно использовать и обычно применяемые в логике круги. Весь круг обозначает новое понятие, а его части - видовые. Можно ввести и условные обозначения. Например, объем родового понятия обозначается одной буквой, а видового - другой. Если дети еще не знают к этому времени знаки «равно», «не равно», «больше», «меньше», то вводятся эти знаки. Теперь ученики могут записать отношения между родовыми и видовыми понятиями. — 148 —
|