Важно также учитывать деление понятий на абсолютные и относительные. Само название понятий говорит о специфике каждой группы. Абсолютные понятия объединяют предметы в классы по определенным признакам, характеризующим суть этих предметов как таковых. Так, в понятии угол отражены свойства, характеризующие сущность любого угла как такого. Аналогично положение со многими другими геометрическими понятиями: окружность, луч, ромб и т.д. В случае относительных понятий объекты объединяются в классы по свойствам, характеризующим их отношение к другим объектам. Так, в понятии перпендикулярные прямые фиксируется то, что характеризует отношение двух прямых друг к другу: пересечение, образование при этом прямого угла. Аналогично в понятии число отражено отношение измеряемой величины и принятого эталона. Опыт показывает, что относительные понятия вызывают у учащихся более серьезные трудности, чем понятия абсолютные. Суть трудностей состоит именно в том, что школьники не учитывают относительность понятий и оперируют с ними как с понятиями абсолютными. Так, когда учитель просит учеников изобразить перпендикуляр, то некоторые из их изображают вертикаль. Особое внимание следует уделить понятию число. Число - это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три - при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления. Не понимая, что действия сложения, вычитания можно производить только с теми числами, за которыми стоит один и тот же эталон, они далеко не всегда, например, могут объяснить правило сложения «столбиком». Допустим, складывая единицы, ребенок получил тринадцать. Он правильно указывает, что три запишем внизу (под единицами), а один «заметим» наверху (над десятками). Однако на вопрос: «А почему так надо делать?» - ученики довольно часто отвечают: «Так учительница говорила». Они не понимают, что получившийся у них десяток - это уже приведение единиц к другой мере, в десять раз большей, и поэтому его складывать можно только с десятками. Непонимание учениками позиционного принципа системы счисления и отражения этого принципа при записи чисел ярко проявляется также при решении такой задачи: «У нас 111899 конфет. Выбери в этом числе цифру, которая обозначает в нем наибольшее количество конфет». Как правило, дети выбирают девятки. Это как раз и говорит о том, что для них число - понятие абсолютное, а не относительное. — 153 —
|