Инженерная эвристика

Страница: 1 ... 169170171172173174175176177178179 ... 235

Так же и в математике: никогда не слышал, чтобы кто-то интерпретировал ту или иную аксиому двояко! Математики выясняют, является ли та или иная аксиоматика полной, непротиворечивой, независимой, разрешимой, но никогда не слышал, чтобы они обсуждали, как надо понимать какую-то отдельную аксиому! Так что аксиомы сформулированы однозначно.

А то, что существует множество геометрий — это аналог тому, что существует множество вариантов игры в шашки (включая «чапаевцев», когда шашки сбиваются с поля щелчком). Шашки и доска одни и те же (если не считать стоклеточных шашек), а правила могут быть разные. Но если мы зафиксировали правила, по которым мы играем, то всё однозначно.

С. Ёлкин. Это глубоко неверное представление! Именно глубоко! Такого рода заблуждения превращаются в препятствия на пути развития и техники и науки.

Сначала о шахматах. Как бы вы ни формулировали правила, если вы их дадите человеку который никогда в шахматы не играл, как это мы наблюдаем у детей, впервые севшими за доску, он будет натыкаться на всякие не описанные случаи. И тогда мы ему говорим: «Так не ходят». То же происходит, когда вводят новые правила, как в случае с блицтурнирами.

Итак. Что же определяет однозначность? Отвечаю.

Во-первых, наличие вполне конкретного в каждом конкретном случае объекта: шахматной доски и фигур (среди них нет живого слона, поэтому вопрос о его кормлении не обсуждается).

Во-вторых, конечно, наличие правил игры.

В-третьих, это практика игры, то есть практика применения правил очень многими игроками и судьями.

Всё вместе и есть тот самый контекст. Только бесконечный (или практически очень большой) контекст даёт нам однозначность, он позволяет отбросить варианты, все, кроме одного — правильного. Только всё вместе даёт однозначность поведения в игре и однозначность правоприменения.

Теперь о математике. Всё то же самое. Одна аксиома не обладает однозначностью. Что бы она стала однозначной, необходимы:

1. Все остальные аксиомы данной системы (именно поэтому у Евклида их пять, а у Гильберта двенадцать);

2. Общее понимание (трактовка, образы) исходных понятий;

3. Практика работы с образами, понятиями, аксиомами.

Всё это и есть математический контекст, снимающий неоднозначность и неточность аксиом. Эта логика может быть распространена и на любой иной контекст.

А. Трушечкин. Позвольте всё-таки с вами не согласиться! Я считаю, что в шахматах нет неописанных в правилах случаев. Ребёнок или новичок сразу все правила в голове не удержит, поэтому будет постоянно их нарушать, а мы со ссылкой на однозначные правила (!) будем ему говорить: «Так не ходят». Не вижу здесь проблемы. Если не согласны, то приведите, пожалуйста, пример какой-нибудь «неописанной ситуации».

— 174 —
Страница: 1 ... 169170171172173174175176177178179 ... 235