Инженерная эвристика

Страница: 1 ... 172173174175176177178179180181182 ... 235

Таким образом, смысл (однозначность) и «бесконечносмыслица» (неоднозначность) не абсолютны, а переходят друг в друга, не давая нам шанса закоснеть в наших догмах.

В том числе закоснеть в догме об однозначности аксиом и великом Гильберте, который создал нам временный рай, пока какой-нибудь новый Рассел не придёт и не выгонит из него всех поганой метлой.

А. Трушечкин. <…> Арифметика неполна (теорема Гёделя так и называется: «О неполноте формальной арифметики»), но это не мешает нам однозначно выполнять арифметические операции сложения, вычитания, умножения и т. д.! Аксиомы арифметики — аксиомы Пеано — однозначны.

Ну а что не всю истину можно ими охватить — что ж, ну, значит, так. Но истина, которую мы можем охватить, — однозначна! Математические теоремы истинны для всех людей всех времён! Теоремы Евклида по-прежнему истинны и понимаются точно так же, хотя им уже более две тысячи лет, за прошедшие века не раз сменялась цивилизация.

То, что вы говорите про контекст и всё такое — в принципе, конечно, правильно, придраться не к чему, но пока нет конкретного примера какой-то неоднозначной ситуации (в каждом своём ответе я повторяю это пожелание), это для меня не очень убедительно.

Я привожу конкретные образы: я однозначно понимаю правила шахматных ходов, арифметического счёта, геометрических построений и т. д., не могу себе представить ситуации, чтобы что-то здесь было неоднозначно. Однозначные алгоритмы я умею воплощать на вычислительных машинах, которые тоже однозначно исполняют заданные им команды. Если вы утверждаете, что это просто следствие моего опыта, понимания контекста, так хорошо — приведите пример ситуации, неоднозначной для новичка, у которого никакого опыта нет. Но который, конечно, обладает логическим мышлением. Не математической логикой даже, а именно простым бытовым логическим мышлением.

Вот я и прошу пример ситуации: «Как только появляется кто-то, у кого имеется несоответствие с общепринятым пониманием, так сразу возникают варианты трактовки».

А что предложил бы наш читатель? Неужели он не сдавал коллоквиум по математическому анализу уже в первом семестре!?

5. Мысленный эксперимент. Качественные инженерно-технические задачи и вопросы

М. Е. Тульчинский писал: «Задача, в которой ставится для разрешения одна из проблем, связанная с качественной стороной рассматриваемого физического явления, которая решается путем логических умозаключений, основывающихся на законах физики, построения чертежа или выполнения эксперимента, но без применения математических действий, называется качественной задачей».

— 177 —
Страница: 1 ... 172173174175176177178179180181182 ... 235