А. Трушечкин. Интересно! Иначе говоря, мы должны проверить, исчезает ли эта аксиома при исчезновении неточности в понятиях? А есть ли неточности в определении понятий «прямая» и «точка»? Обратимся к оригинальным определениям Евклида. Евклид определяет точку как «то, что не имеет частей», а прямую — как «длину без ширины». Действительно очень нечёткие понятия. В современной математике, например, не принято работать с такими нечёткими понятиями. Согласно более современной аксиоматике Гильберта и другим современным аксиоматикам геометрии, прямая и точка — это неопределяемые понятия. Подход современной математики следующий: мы вводим понятия прямой и точки, но не определяем их, то есть не говорим, что есть точка и что есть прямая. Зато мы говорим, в какие отношения они могут вступать: точка может принадлежать прямой (соответственно, прямая — проходить через точку). Всё! Мы полностью абстрагировались от смысла понятий, мы просто указали формальные отношения между ними! Можно сказать, что математика занимается не столько самими объектами, сколько отношениями между ними! Таким образом, в современной математике даже нельзя поставить вопрос, чётко или нечётко определены понятия прямой и точки — они вообще не определены! Кстати, и понятие «принадлежать» тоже не определено. Просто говорится, что прямая и точка могут вступать в такое отношение друг с другом. Полное абстрагирование от смысла, только работа с формальными отношениями. С другой стороны, неопределяемые понятия не должны нас удивлять. К выводу об их существовании пришёл ещё Аристотель. Мы определяем одни понятия через другие, те понятия — через третьи и т. д. Рано или поздно цепочка должна закончиться. Она закончится на таких понятиях, которые мы уже не можем определить, а познаём интуитивно. Такие понятия Аристотель назвал «категориями». Точка и прямая — безусловно, одни из подобных понятий. Мы их можем выразить немного другими словами, но это не есть определение в логическом смысле. Евклидово определение прямой как «длины без ширины» — это, видимо, именно дополнительное пояснение для нашей интуиции, а не логическое определение. Тогда сразу возникают вопросы, что такое «длина» и «ширина». Эти понятия уже сами связаны с геометрией, то есть с тем, что мы как раз и собираемся строить. Возникает замкнутый круг. Поэтому «длина без ширины» — это не логическое определение, а просто пояснение для нашей интуиции. Наверное, Евклид это понимал, особенно, если был знаком с трудами Аристотеля[102]. Неопределимы также и такие философские категории как «время», «пространство», «материя» и т. д. Это такие «первопонятия», кирпичики, которые мы познаём интуитивно, из опыта и на основе которых начинаем строить другие, более сложные понятия. — 170 —
|