Мой личный вклад в описываемые исследования восходит к 1973 году, когда я приступил к использованию нового метода, разработанного мной для гармонического анализа — области математики, насчитывающей несколько сотен лет и используемой для описания равновесных ситуаций. Созданный мной метод был основан на так называемом принципе максимума , который предполагает рассмотрение худшего из всех возможных сценариев. Представим, к примеру, что нам требуется доказать неравенство А < 0. Для этого нужно сформулировать вопрос так: «Какое максимальное значение может принимать А?» Если рассмотреть наихудший случай, то есть взять наибольшее из возможных значений А и его величина все равно останется меньше нуля, то этим мы и подтвердим истинность исходного утверждения. На этом работу по доказательству можно считать законченной и насладиться заслуженным отдыхом. Я, иногда работая сам, иногда — совместно с Ш. Ю. Ченгом, моим бывшим однокурсником из Китайского университета Гонконга, применил этот принцип к огромному количеству нелинейных проблем. Работа включала в себя исследование уравнений, повсеместно возникающих в геометрии и физике и носящих в математике название эллиптических . Хотя подобные задачи, как правило, чрезвычайно сложны, в них отсутствует зависимость от времени, и поэтому их можно рассматривать как стационарные, что заметно упрощает решение. В 1978 году мы с Питером Ли рассмотрели более сложную, зависящую от времени — динамическую ситуацию. В частности, мы исследовали уравнения, описывающие процессы распространения тепла через тело или многообразие. Мы рассмотрели случай, в котором одна из переменных, например энтропия — величина, характеризующая беспорядок системы, — изменяется во времени. Наиболее известным нашим вкладом в эту область стало неравенство Ли-Яу, описывающее с математической точки зрения процесс изменения теплового потока или другой аналогичной ему переменной во времени. Гамильтон и Перельман, в свою очередь, рассмотрели изменение во времени не теплового потока, как мы, а именно энтропии, отвечающей за беспорядок в системе. Соотношение Ли-Яу называется «неравенством», поскольку значение некой величины — в данном случае значение теплового потока или энтропии — в конкретной точке в определенный момент времени больше или меньше значения теплового потока или энтропии в той же точке в другой момент времени. Наш подход дал в руки ученым количественный метод исследования процессов развития сингулярностей в нелинейных системах путем отслеживания расстояния между двумя точками с течением времени. Когда две точки сближаются настолько, что расстояние между ними становится равным нулю, вы получаете сингулярность. И сингулярность, и понимание этих сингулярностей является ключевым моментом для исследования процессов распространения тепла в целом. В частности, наш метод позволил подобраться к сингулярности настолько близко, насколько только это возможно, показывая, что происходило непосредственно перед столкновением — например, какова была скорость сближения точек. Это напоминает попытку реконструкции событий, предшествовавших автомобильной аварии. — 71 —
|