Рис. 3.12. Геометр Саймон Дональдсон Противоположным примером является так называемая экзотическая сфера . Экзотической сферой называется гладкое во всех точках семимерное многообразие, которое, тем не менее, невозможно без нарушения гладкости преобразовать в обычную круглую семимерную сферу даже при соблюдении условия непрерывности преобразования. Таким образом, подобные поверхности являются гомеоморфными, но не диффеоморфными. Джон Мильнор, уже упоминавшийся в данной главе, получил медаль Филдса во многом благодаря установлению им факта существования экзотических пространств. До открытия Мильнора многие сомневались в существовании таких пространств, поэтому их и назвали экзотическими. Плоское евклидово пространство для случая двух измерений является простейшим из всех пространств, которые можно себе представить, — это плоская поверхность, подобная крышке стола, которая простирается бесконечно во всех возможных направлениях. На вопрос, будет ли двухмерный диск, множество точек которого является подмножеством точек плоскости, гомеоморфным и диффеоморфным данной плоскости, можно ответить — да, будет. Можно представить себе толпу людей, стоящих на плоскости, каждый из которых берет в руку краешек диска и идет с ним в направлении от центра диска. Как только они достигнут бесконечности, диск точно, непрерывно и однозначно совпадет с плоскостью. Таким образом, эти объекты идентичны с точки зрения тополога. Очевидно и то, что подобный процесс растягивания диска в радиальном направлении можно проделать без нарушения его гладкости. Все вышесказанное сохраняет свою силу для трех и любого другого числа измерений за исключением случая четырех. В четырехмерном пространстве многообразия могут быть гомеоморфны плоскости или плоскому евклидовому пространству, не будучи при этом диффеоморфны ему. По сути, существует бесконечное множество четырехмерных многообразий, гомеоморфных, но не диффеоморфных четырехмерному евклидовому пространству, носящих общее название ?4 (? — от «real» — означает, что элементами пространства являются действительные числа, в противоположность комплексному четырехмерному пространству). Четырехмерное пространство преподносит нам множество особенностей и загадок. Так, к примеру, в пространственно-временном континууме, содержащем 3+1 измерение (три пространственных и одно временное), по словам Дональдсона, «электрическое и магнитное поля будут идентичны». «Но для другого числа измерений с геометрической точки зрения это будут два совершенно разных объекта. Одно из них представляет собой тензор и описывается при помощи матрицы, тогда как другое — вектор, и сравнивать их невозможно. Только в четырех измерениях и то и другое поле будет описываться векторами. Симметрия, имеющая место в данном случае, для иного числа измерений будет отсутствовать».[37] — 66 —
|