Дональдсона, по его словам, восхищает тот факт, что с фундаментальной точки зрения невозможно точно указать, что именно выделяет случай четырех измерений среди всех остальных. До того как вышла его работа, о «гладкой эквивалентности» (диффеоморфизме) не было известно практически ничего, хотя благодаря математику Майклу Фриману (ранее работавшему в Калифорнийском университете, Сан-Диего) уже существовали определенные наработки в области топологической эквивалентности (гомеоморфизма). В свою очередь Фриман классифицировал четырехмерные многообразия с топологической точки зрения, основываясь на более ранней работе Эндрю Кассона, в настоящее время работающего в Йельском университете. Дональдсон привнес в топологию целый ряд свежих идей, использование которых на практике позволило решить сложнейшую задачу классификации гладких (диффеоморфных) четырехмерных многообразий, открыв, фигурально выражаясь, закрытую прежде дверь. До него подобные многообразия были темным лесом. И хотя четырехмерные многообразия еще содержат в себе много загадок, по крайней мере, вопрос, с чего начинать их исследование, уже не стоит. При этом, однако, метод Дональдсона оказался чрезвычайно труден для практического применения. «Мы работали как лошади, пытаясь этим путем извлечь хоть какую-то информацию!» — рассказал гарвардский геометр Клиффорд Таубс.[38] В 1994 году Эдвард Виттен и его коллега — физик Натан Зайберг обнаружили намного более простой метод исследования геометрии четырехмерных пространств, несмотря на то что их подход основывался не собственно на геометрии, как метод Дональдсона, а на одной из теорий из области физики элементарных частиц — так называемой теории суперсимметрии . «В новом уравнении содержится вся информация, которая содержалась и в старом, — прокомментировал это открытие Таубс. — Разница лишь в том, что извлечь эту информацию из нового уравнения в тысячу раз проще».[39] Таубс, как и многие другие, использовал подход Зайберга-Виттена для расширения наших знаний о геометрических структурах в четырехмерном пространстве, понимание которых на сегодняшний день остается весьма условным, но тем не менее очень важным для ответа на вопрос о природе пространства-времени в общей теории относительности. Виттен показал, что для большей части четырехмерных многообразий число решений уравнения Зайберга-Виттена определяется исключительно топологией соответствующего многообразия. После этого Таубс доказал теорему, согласно которой количество решений этих уравнений, предопределенное топологией многообразия, совпадает с числом подпространств или кривых определенного типа (семейства ), которые можно поместить в данном многообразии. Определив количество кривых конкретного типа, соответствующих данному многообразию, можно как определить его геометрию, так и получить о нем много другой важной информации. Таким образом, справедливым будет заметить, что теорема Таубса позволила значительно продвинуться в области исследования подобных пространств. — 67 —
|