Для того чтобы увидеть сингулярность крупным планом — или разрешить ее , как принято говорить в математике, — нами был изобретен особый вид «увеличительного стекла». Этот прибор мы используем для того, чтобы получше рассмотреть ту область, в которой пространство сходится в особую точку. Затем мы увеличиваем выбранную область, сглаживая при этом все складки и неровности. Этот процесс повторяется не один или два, но бесконечное число раз. Чтобы увидеть полную картину, мы растягиваем не только пространство, но и время — то есть замедляем его. На следующем этапе происходит сравнение полученного описания точки сингулярности, соответствующее бесконечно большому числу увеличений, с описанием системы до столкновения точек. Неравенство Ли-Яу позволяет непосредственно сопоставить то, что было до столкновения, с тем, что стало после. Гамильтон воспользовался нашим подходом, чтобы более пристально взглянуть на поток Риччи, исследуя структуру сингулярностей, которые могут возникать в процессе преобразования. Введение неравенства Ли-Яу в модель потока Риччи оказалось сложной задачей, на которую Гамильтону потребовалось почти пять лет, поскольку те уравнения, с которыми он имел дело, характеризовались куда большей нелинейностью — и, следовательно, куда большей сложностью, чем наши. Один из подходов Гамильтона заключался в исследовании особого класса решений, являющихся стационарными в определенной системе координат. Выбор подходящей системы координат позволяет упростить многие задачи — например, при рассмотрении движения людей, находящихся на вращающейся карусели, оптимальным будет выбор системы координат, вращающейся с той же скоростью, что и карусель. Путем отбора стационарных решений, являющихся более простыми для понимания, Гамильтон разработал оптимальный метод введения методов оценки Ли-Яу в свои уравнения. Это, в свою очередь, позволило ему уяснить динамику потока Риччи — то есть процессов движения и развития объектов. В частности, Гамильтон был очень заинтересован исследованием процесса порождения сингулярностей в результате сложного движения в пространственно-временном континууме. В конечном итоге ему удалось описать структуру всех возможных сингулярностей, которые могли бы возникнуть в процессе преобразования, хотя он и не мог доказать, что все эти сингулярности обязательно возникнут. Из тех сингулярностей, которые удалось идентифицировать Гамильтону, все, кроме одной, были устранимы — удалить их можно было при помощи методов топологической «хирургии», методики, разработанной и широко применяемой в четырехмерном пространстве. «Хирургические» процедуры весьма сложны, но при удачной реализации дают возможность убедиться в эквивалентности исследуемого пространства сфере, что и требовал Пуанкаре. — 72 —
|