В настоящее время теория гомологической зеркальной симметрии установила тесную связь с другими областями математики, в том числе и с гипотезой SYZ. На сегодняшний день, однако, не существует «строгой математической эквивалентности между двумя теориями, [но] они поддерживают друг друга, — утверждает Гросс. — И, если они обе верны, мы рано или поздно обнаружим их эквивалентность на определенном уровне»[124]. Эта история еще не закончена. Мы до сих пор пытаемся выяснить, что же представляет собой зеркальная симметрия, с помощью наших исследований гипотезы SYZ, гомологической зеркальной симметрии и других подходов. Введение зеркальной симметрии привело к созданию новых направлений в математике, уже не имеющих ничего общего с самой зеркальной симметрией, и никто точно не знает, как далеко заведут нас эти исследования и где они в конечном итоге закончатся. Однако мы точно знаем, с чего они начались, — с открытия необычного свойства компактных кэлеровых многообразий, носящих название многообразий Калаби-Яу, — пространств, на которых более двух десятилетий назад был практически поставлен крест. Восьмая главаПетли в пространстве-времениЗигмунд Фрейд считал, что, для того чтобы понять природу человеческого разума, необходимо изучать людей, чье поведение не укладывается в общепринятые нормы, то есть является аномальным, — людей, одержимых странными, навязчивыми идеями: например, в число его знаменитых пациентов входили «человек-крыса» (у которого были сумасшедшие фантазии, в которых дорогих ему людей привязывают ягодицами к горшку с крысами) и «человек-волк» (который часто видел сон, как его заживо съедают белые волки, сидящие на дереве перед окном его спальни). Фрейд считал, что больше всего мы узнаем о типичном поведении, изучая самые необычные, патологические случаи. С помощью таких исследований, по его словам, мы могли бы в конечном итоге прийти к пониманию как норм, так и отклонений от них. Мы часто применяем аналогичный подход в математике и физике. «Мы ищем области пространства, в которых не работают классические описания, поскольку именно в этих областях, мы открываем что-то новое», — поясняет гарвардский астрофизик Ави Лёб. Рассуждаем ли мы об абстрактном пространстве в геометрии или о более материальном пространстве, которое мы называем Вселенной, области «где что-то ужасное происходит с пространством, где вещи разрушаются», как говорит Лёб, и являются теми областями, которые мы называем сингулярностями.[125] Вопреки тому, что вы могли бы подумать о сингулярностях, они широко распространены в природе. Они вокруг нас: капля воды, отрывающаяся и падающая из неисправного водопроводного крана, — самый распространенный пример (часто наблюдающийся в моем доме), место (хорошо известное серфингистам), где океанские волны разрываются и дробятся, сгибы в газете (которые показывают, является статья важной или просто «водой») или места скруток на воздушном шарике, свернутом в виде французского пуделя. «Без сингулярностей вы не можете говорить о формах», — замечает геометр Хэйсукэ Хиронака, заслуженный профессор Гарвардского университета. Он приводит в качестве примера собственную подпись: «Если здесь нет пересекающихся линий, острых углов, то это просто каракули. Сингулярность представляла бы собой пересекающиеся или внезапно меняющие направление линии. В мире можно встретить много подобных вещей, и они делают мир интереснее».[126] — 162 —
|