Если добавить еще одно комплексное измерение, перейдя таким образом от двух вещественных измерений к четырем, многообразие Калаби-Яу превратится в K3-поверхность. Подмногообразия, в свою очередь, в этом случае являются уже не окружностями, а двухмерными торами, соединенными в единое целое в рамках многообразия. «Изобразить четырехмерное пространство мне не под силу, — говорит Гросс. — Но я могу описать пространство В , указывающее на то, в каком порядке расположены составляющие его подмногообразия (бублики)».[112] В этом случае пространство В представляет собой просто двухмерную сферу. Каждая точка этой сферы соответствует отдельному бублику, за исключением двадцати четырех «плохих» точек, соответствующих «сжатым бубликам», имеющим сингулярности, смысл которых будет вкратце объяснен далее. Добавим еще одно комплексное измерение, превратив рассматриваемое многообразие в трехмерное многообразие Калаби-Яу. Пространство В теперь превратится в трехмерную сферу (трехмерную поверхность мы изобразить не в состоянии), а ее подпространства — в трехмерные бублики. В этом случае набор «плохих» точек, соответствующих сингулярным бубликам, приходится на линейные сегменты, связанные друг с другом подобием сети. «Все точки линейного сегмента являются “плохими” [или сингулярными], однако те из них, которые лежат в вершинах сети, в местах пересечения сразу трех линейных сегментов, являются совсем плохими», — говорит Гросс. Эти точки, в свою очередь, соответствуют наиболее искаженным бубликам.[113] Рис. 7.9. Гипотеза SYZ, названная в честь ее авторов, Эндрю Строминджера, автора данной книги (Шинтана Яу) и Эрика Заслоу, предлагает способ разложения сложного пространства, такого как многообразие Калаби-Яу, на составные части, или подмногообразия. Хотя мы не в силах изобразить шестимерное многообразие Калаби-Яу, вместо этого мы можем нарисовать двухмерное (имеющее два вещественных измерения) пространство Калаби-Яу, представляющее собой бублик с плоской метрикой. Подмногообразия, образующие бублик, являются окружностями, и их порядок определяется вспомогательным пространством В , также представляющим собой окружность. Каждая точка на В соответствует определенной окружности; и все многообразие — или бублик — состоит из набора подобных окружностей Рис. 7.10. Гипотеза SYZ предоставляет новый взгляд на K3-поверхности, являющиеся классом четырехмерных многообразий Калаби-Яу. Согласно гипотезе SYZ, мы можем создать K3-поверхность, взяв двухмерную сферу, являющуюся вспомогательным пространством в данном примере, и прикрепив к каждой ее точке двухмерный бублик — 157 —
|