К сожалению, многообразие, полученное в результате этой процедуры, являлось не совсем тем, которое нам было нужно, поскольку оно порождало не три поколения частиц, а девять. Однако это многообразие характеризуется симметрией третьего порядка, что позволило мне создать так называемое фактор-многообразие , в котором каждая точка соответствовала трем точкам в исходном многообразии. Нахождение фактор-многообразия в этом случае было подобно делению исходного многообразия на три равных части. Таким образом, число точек уменьшилось в три раза, так же как и число поколений. Насколько мне известно, это фактор-многообразие было первым — и долгое время единственным — многообразием Калаби-Яу, имеющим эйлерову характеристику 6 или -6, что открывало возможность его использования для создания трех поколений элементарных частиц. И действительно, я не слышал ни о чем подобном вплоть до конца 2009 года, когда Канделасу с двумя его коллегами — Фолькером Брауном из Дублинского института перспективных исследований и Рисом Дэвисом из Оксфорда — удалось проделать что-то подобное, создав многообразие Калаби-Яу с эйлеровой характеристикой, равной -72, и фактор-многообразие с эйлеровой характеристикой, равной -6. По иронии судьбы, в конце 1980-х Канделасу с двумя его коллегами удалось создать и исходное (или «родительское») многообразие Калаби-Яу — одно из восьми тысяч многообразий, созданных на то время, — но его потенциальную применимость он осознал только более чем через двадцать лет.[75] Рис. 6.5. Геометрия позволяет нам уменьшить число измерений объекта, разрезав его и рассматривая только полученное поперечное сечение. К примеру, разрезав трехмерное яблоко, вы обнаружите двухмерную поверхность — одну из множества поверхностей, которые можно получить, в зависимости от того, где и как вы разрезали. Следующий разрез позволит получить одномерную линию на поверхности. Разрезая эту линию, вы получите отдельную (нульмерную) точку. Таким образом, каждый успешный разрез, вплоть до получения точки, уменьшает размерность объекта на единицу Я затронул этот вопрос, поскольку в далеком 1986 году, когда Брайан Грин только начинал свои попытки извлечь подлинную физику из многообразий Калаби-Яу, возможных вариантов многообразий существовало не так уж много. Для того чтобы получить правильное число поколений, он принял на вооружение то многообразие, которое я создал в 1984 году по пути в Аргонскую национальную лабораторию. Работая над этой проблемой сначала в качестве аспиранта Оксфордского университета, а затем моего постдока в Гарварде, Грин совместно с Келли Кирклином, Полом Мироном и своим бывшим руководителем по Оксфорду Грэхемом Россом подошел еще ближе к Стандартной модели, чем Канделас, Горовиц, Строминджер и Виттен за год до этого. Модель Грина содержала гораздо больше информации — буквально пошаговое руководство по извлечению физических характеристик из многообразий Калаби-Яу. Он и его коллеги получили правильную суперсимметрию, верное число поколений, массивные нейтрино (с чрезвычайно малой массой) и почти все, что только можно было желать, за исключением нескольких дополнительных частиц, существование которых в данном случае и не предполагалось. Итак, это многообразие Калаби-Яу оказалось близко к желаемому — ближе, чем какое-либо другое до этого, — но все же не совсем тем, которое требовалось для решения данного вопроса. Это, конечно, не стоит воспринимать как критику их работы, так как почти четверть века спустя полностью разобраться в этом «вопросе» так никому и не удалось. — 132 —
|