Теория струн и скрытые измерения Вселенной

Страница: 1 ... 125126127128129130131132133134135 ... 302

Насколько же близко могут подойти ученые в своих предсказаниях к свойствам реального мира, получив в руки все эти инструменты? Этой теме будет посвящена девятая глава, а сейчас мы рассмотрим статью Канделаса, Горовица, Строминджера и Виттена, вышедшую в 1985 году и представляющую собой первую серьезную попытку показать способность теории струн при помощи компактификаций Калаби-Яу описывать реальный мир.[73] Уже тогда физики были способны получать хорошее соответствие теории с практикой. В частности, их модель предсказала оптимальную для случая четырех измерений суперсимметрию, обозначаемую как N=1 , что означает инвариантность пространства относительно четырех симметричных преобразований, которые можно рассматривать как четыре различных вида вращений. Это само по себе уже являлось большим успехом, так как в случае получения ими максимального значения суперсимметрии N = 8, что соответствовало бы наиболее сложной ситуации — инвариантности относительно двадцати двух различных симметричных операций, — это наложило бы на физику столь сильные ограничения, что единственным допустимым вариантом Вселенной стало бы плоское пространство без какой-либо кривизны, в существовании которой, конечно, сомнений быть не может, или любых других неоднородностей типа черных дыр, делающих жизнь, по крайней мере, физиков-теоретиков, столь интересной. В случае, если бы Канделас и его коллеги потерпели неудачу на этом фронте и было бы получено доказательство, что данные шестимерные пространства не способны обладать необходимой суперсимметрией, компактификация в теории струн, по крайней мере, для данного примера, потерпела бы неудачу.

Эта статья стала огромным шагом вперед и в настоящее время рассматривается как этап первой струнной революции, хотя в некоторых вопросах, например в предсказании количества поколений элементарных частиц, она промазала мимо цели. В стандартной модели, принятой в физике элементарных частиц, — модели, на протяжении уже нескольких десятилетий задающей тон в этой области физики и включающей в себя электромагнитное, слабое и сильное взаимодействия, — все элементарные частицы, из которых состоит вещество, разделены на три поколения. Каждое из поколений состоит из двух кварков, электрона или одного из его аналогов (мюона или таона) и нейтрино, которое также бывает трех видов — электронное, мюонное и таонное. Частицы, принадлежащие к первому поколению, наиболее привычны для нашего мира, являясь одновременно наиболее стабильными и наименее массивными. Частицы из третьего поколения обладают наименьшей стабильностью и наибольшей массой, тогда как члены второго поколения находятся примерно посередине. К глубокому сожалению для Канделаса и компании, многообразия Калаби-Яу, с которыми они работали, дали на выходе четыре поколения элементарных частиц. Они ошиблись лишь на единицу, но в этом случае разница между тремя и четырьмя была огромной.

— 130 —
Страница: 1 ... 125126127128129130131132133134135 ... 302