Теория струн и скрытые измерения Вселенной

Страница: 1 ... 122123124125126127128129130131132 ... 302

Рис. 6.4. Если теория струн верна, то в любой точке четырехмерного пространства-времени присутствует скрытое шестимерное пространство Калаби-Яу (изображения многообразий Калаби-Яу сделаны Эндрю Хэнсоном, Университет Индианы)

Можно объяснить и по-другому: мы живем в бесконечном пространстве, и наши горизонты чрезвычайно широки, даже если та часть пространства, которую мы успели посетить, чрезвычайно мала. Однако куда бы мы ни шли в этом большом и широком мире, везде «на расстоянии вытянутой руки» нас будет сопровождать крошечное пространство, полный доступ к которому мы никогда не получим. Представим себе необычную систему координат, в которой ось x представляет собой наше бесконечное четырехмерное пространство, а ось y — внутреннее пространство Калаби-Яу. Каждой точке на оси x соответствует скрытая шестимерная область. Напротив, каждой точке на оси у соответствует четырехмерное пространство или направление, также доступное для исследований.

Пожалуй, наиболее удивительным является то, что эта скрытая, внутренняя часть Вселенной — область, которую невозможно увидеть, ощупать, понюхать или ощутить иным образом, — может оказывать большее влияние на физические процессы, чем привычный нам мир из кирпича и камня, машин и ракет, а также миллиардов и миллиардов галактик. По крайней мере, именно это утверждает теория струн. «Все физические величины, которые можно измерить, — все фундаментальные понятия, такие как масса кварков и электронов, — определяются геометрией многообразий Калаби-Яу, — объясняет физик Джозеф Полчинский из Калифорнийского университета. — Зная форму, мы, по сути, знаем все».[71]Или, как выразился Брайан Грин: «Код Вселенной можно успешно записать языком геометрии пространств Калаби-Яу».[72] Если общая теория относительности Эйнштейна сводит гравитацию к геометрии, то струнные теоретики надеются развить это утверждение дальше, доказав, что геометрия в виде многообразий Калаби-Яу лежит в основе не только гравитации, но и всей физики в целом.

Я, конечно, не собираюсь ставить под сомнение эти фундаментальные утверждения. Но разумный человек может задаться вопросом: если гипотеза Калаби слишком хороша для того, чтобы быть истинной, то как относиться к вышеуказанному утверждению? И каким образом можно объяснить все вышесказанное? Я опасаюсь, что настоящее объяснение покажется кому-то неудовлетворительным и даже представляющим собой подобие порочного круга — способность многообразий Калаби-Яу к столь чудесным свершениям объясняется тем, что это их свойство с самого начала было встроено в механизм работы теории струн. Впрочем, даже если и так, то все же возможно дать некое общее представление о том, как этот «механизм» — с десятимерными многообразиями на входе и четырехмерной физикой на выходе — работает на самом деле. Попробуем представить максимально упрощенную картину способа получения элементарных частиц и их масс из заданного многообразия Калаби-Яу при учете того, что соответствующее многообразие является неодносвязным . Неодносвязное многообразие подобно тору с одной или большим числом дырок, часть петель которого, находящихся на его поверхности, не могут быть стянуты в точку, в противоположность сфере — односвязной поверхности, на которой любая петля может быть стянута в точку подобно тому как натянутая на глобус упругая резиновая лента соскальзывает с экватора на один из полюсов. Начав со сложного шестимерного многообразия с определенным числом дырок, рассчитаем все возможные пути, которыми можно пропустить струны через многообразие, проходя через различные дырки один или более раз. Это нелегкая задача, поскольку путей пропускания струн через многообразие существует огромное множество, а петли могут иметь разные размеры, зависящие, в свою очередь, от размеров дырок. Из всех этих возможностей вы можете составить список потенциальных частиц. Массы частиц можно определить, умножая длины струн на их натяжение, эквивалентное линейной плотности энергии струны, входящей в кинетическую энергию колебания. Объекты, получаемые таким образом, могут иметь любое число измерений между нулем и шестью. Некоторые из них разрешены, некоторые — нет. Взяв все разрешенные объекты и все разрешенные движения, вы и получите окончательный список частиц и их масс.

— 127 —
Страница: 1 ... 122123124125126127128129130131132 ... 302