Расчеты Виттена в рамках двухмерной разновидности квантовой теории, называемой конформной теорией поля , заметно отличались от расчетов его коллег, поскольку он сделал намного меньше предположений относительно лежащего в ее основе пространства-времени. Впрочем, он пришел к тому же заключению, что и другие, а именно что геометрия внутренних пространств должна принадлежать к типу Калаби-Яу. Ничто другое не подходило. «Тот факт, что результат был получен двумя независимыми путями, укреплял уверенность в его истинности, — говорит Горовиц. — Более того, это свидетельствовало в пользу того, что это наиболее естественный путь проведения компактификации, поскольку к одним и тем же условиям мы пришли с двух совершенно разных стартовых позиций».[66] Четверка закончила свою работу в 1984 году и моментально поделилась своими открытиями с коллегами, выпустив несколько препринтов, хотя их статья вышла только через год. Эта статья ввела в оборот термин «пространства Калаби-Яу», впервые познакомив физиков со странным шестимерным миром. До публикации в 1985 году статьи Калаби «не ожидал, что наша работа может иметь какое-либо физическое значение. Это была чистая геометрия», — по его же собственным словам. Вышедшая статья, однако, изменила все, введя многообразия Калаби-Яу в самое сердце теоретической физики. «Она также привлекла неожиданное внимание к двум математикам, причастным к открытию этих пространств, — вспоминает Калаби, — поместив нас на передовицы газет. Подобные вещи всегда льстят, это относится и к той известности, которая пришла к нам с началом разговоров о пространствах Калаби-Яу, хотя на самом деле наша заслуга была не столь велика».[67] Наша работа, по крайней мере, на некоторое время стала последним писком моды в физике, перекинувшись с «газетных передовиц» и на другие области. Многообразия Калаби-Яу стали названием экспериментальной театральной постановки «Калаби-Яу», заглавием альбома в жанре электро/синтпоп группы DopplerEffekt — «Пространства Калаби-Яу», названием картины «Мона Лиза Калаби-Яу» итальянского художника Франческо Мартино и мишенью шутки в рассказе Вуди Аллена из «Нью Йоркера»: «Мой милый, — сказала она, кокетливо улыбаясь и свернувшись в форме поверхности Калаби-Яу».[68] Известность, которую приобрела эта столь трудная для понимания идея, была весьма неожиданной, учитывая то, что многообразия данного типа непросто даже описать словами, не то что представить. Пространство, обладающее шестью измерениями, по замечанию одного физика, имеет «на три измерения больше, чем то, которое я способен вообразить». Картина осложняется и присутствием скрученностей, многомерных дыр, которых может быть как небольшое количество, так и свыше пятисот, словно в элитном сорте швейцарского сыра. — 125 —
|