ИВАН ВСЕВОЛОДОВИЧ МЕЩЕРСКИЙ (1859—1935)Советский ученый в области механики, основоположник механики тел переменной массы. Работы И.В. Мещерского явились основой для решения многих проблем реактивной техники В 1889 г. И.В. Мещерский выдержал при Петербургском университете экзамены на ученую степень магистра прикладной математики и получил право на чтение лекций. В ноябре 1890 г. И.В. Мещерский начал преподавание в Петербургском университете в качестве приват-доцента. В 1891 г. он получил кафедру механики на Петербургских высших женских курсах, которую занимал до 1919 г., т. е. времени слияния этих курсов с университетом. В 1897 г. Мещерский успешно защитил в Петербургском университете диссертацию на тему «Динамика точки переменной массы», представленную им для получения степени магистра прикладной математики. В 1902 г. он был приглашен заведовать кафедрой в незадолго перед тем основанный Петербургский политехнический институт. Здесь и протекала до конца жизни его основная научно-педагогическая работа. И.В. Мещерский 25 лет вел педагогическую работу в Петербургском университете и 33 года в Политехническом институте. Многие слушатели Мещерского стали крупными учеными. Так, например, среди слушателей курса «Интегрирование уравнений механики», прочитанного Мещерским, были такие выдающиеся русские ученые, как академик А.Н. Крылов, профессор Г.В. Колосов и др. В архиве АН СССР хранится тетрадь А.Н. Крылова с записями лекций Мещерского, прочитанных последним в 1890/1891 учебном году в Петербургском университете. Широко известен его курс теоретической механики и особенно прекрасный задачник по механике, выдержавший более двух десятков изданий и принятый в качестве учебного пособия для высших учебных заведений не только в СССР, но и в ряде зарубежных стран. Основным предметом научных исследований И.В. Мещерского явилась проблема движения тел с переменной массой. Всю свою творческую жизнь он посвятил созданию основ механики переменных масс и достиг в этом выдающихся результатов. Классический закон движения Ньютона, выражаемый дифференциальным уравнением где m — масса точки, V — скорость, F — равнодействующая приложенных сил, перестает, вообще говоря, быть верным, если масса меняется со временем. Между тем в ряде важных случаев приходится иметь дело с движущимися телами переменной массы. Сам Мещерский в своей работе «Динамика точки переменной массы» писал: «Такие случаи нам представляет сама природа: масса Земли возрастает вследствие падения на нее метеоритов; масса метеорита, движущегося в атмосфере, убывает вследствие того, что некоторые частицы его или отрываются, или сгорают; масса падающей градины или снежинки возрастает в тех частях пути, где на нее оседают пары из окружающей атмосферы, и убывает вследствие испарения там, где она проходит через слои воздуха, более теплые и более сухие; плавающая льдина представляет пример, где масса возрастает вследствие намерзания и убывает вследствие таяния и т. д. — 202 —
|