Механика от античности до наших дней

Страница: 1 ... 192193194195196197198199200201202 ... 306

В начале своей работы Ковалевская ставит вопрос: не существует ли кроме случаев, рассмотренных Эйлером и Лагранжем, еще других случаев движения твердого тела вокруг неподвижной оси, которые могли бы быть выражены при помощи каких-либо функций времени, аналогичных функциям, примененным для исследования первых двух задач? В результате своих изысканий она находит, что применение подобных функций позволит разрешить только один новый случай движения твердого тела. В этом случае центр тяжести тела лежит в плоскости экватора эллипсоида инерции, построенного для неподвижной точки.

В работе Ковалевской о вращении тяжелого твердого тела вокруг неподвижной точки необходимо отметить следующие существенно новые для механики и математики особенности. Ею открыт новый случай вращения твердого тела вокруг неподвижной оси, для которого она нашла общий интеграл. Этот случай справедливо получил ее имя. В своем труде С.В. Ковалевская впервые привлекла к исследованию подобных задач прекрасно разработанный аппарат теории функций комплексного переменного. Наконец, ее работа поставила некоторые новые общие математические проблемы. Н.Е. Жуковский построил наглядные модели волчков для всех трех решенных в конечном виде случаев вращения твердого тела: первый из приведенных рисунков характеризует случай Эйлера — Пуансо, второй — случай Лагранжа — Пуассона, и третий — случай Ковалевской (см. рисунок).

Работы С.В. Ковалевской, посвященные движению твердого тела, стали исходным пунктом многочисленных исследований. Мы можем назвать русских ученых, так или иначе дополнивших анализ Ковалевской: московских профессоров Г.Г. Аппельрота (1866—1943), П.А. Некрасова, Б.К. Млодзеевского (1859—1923), Н.Е. Жуковского, а также А.М. Ляпунова и Н.Б. Делоне.

ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ

Одним из крупнейших достижений механики в конце XIX в. явилось создание теории устойчивости движения систем с конечным числом степеней свободы. Основоположником этой теории был А.М. Ляпунов, которому наука обязана и многими другими важными исследованиями, особенно по фигурам равновесия вращающейся жидкости. Мы остановимся преимущественно на разработке Ляпуновым проблемы устойчивости движения.

Александр Михайлович Ляпунов родился 6 июня 1857 г. в Ярославле. Первоначальное математическое образование он получил под руководством отца, М.В. Ляпунова, известного астронома, работавшего ряд лет в Казани, а с 1855 по 1863 г. бывшего директором Демидовского лицея в Ярославле. В 1870 г. семья Ляпуновых переехала в Нижний Новгород. В 1876 г. А.М. Ляпунов окончил здесь гимназию и поступил в Петербургский университет на отделение естественных наук физико-математического факультета; вскоре он перешел на математическое отделение. Особенно большое влияние оказали на Ляпунова курсы лекций П.Л. Чебышева, а также Д.К. Бобылева.

— 197 —
Страница: 1 ... 192193194195196197198199200201202 ... 306