Общая психодиагностика

Страница: 1 ... 6061626364656667686970 ... 324

, (3.1.1)

где xj – балл i-го испытуемого;

yi -значение i-го балла по порядку возрастания;

pi - частота встречающегося i-го балла;

n - количество испытуемых в выборке (объем);

m - количество градаций шкалы (количество баллов).

  1. Среднее квадратическое (стандартное) отклонение:

,(3.1.2)

где - сумма квадратов тестовых баллов для и испытуемых.

3. Асимметрия:

(3.1.3)

где - среднее арифметическое значение;

S - стандартное отклонение;

? - среднее кубическое значение: ,

С - среднее квадратическое:

4. Эксцесс:

, (3.1.4)

где Q - среднее значение четвертой степени: .

Стандартная ошибка среднего арифметического значения (мате­матического ожидания) оценивается по формуле:

(3.1.5)

На основе ошибки математического ожидания строятся довери­тельные интервалы: )

Если тестовый балл какого-либо испытуемого попадает в грани­цы доверительного интервала, то нельзя считать, что испытуемый обладает повышенным (или пониженным) значением измеряемого свойства с заданным уровнем статистической значимости.

Асимметрия и эксцесс нормального распределения должны быть равны нулю. Если хотя бы один из двух параметров существенно от­личается от нуля, то это означает анормальность полученного эмпи­рического распределения.

Проверку значимости асимметрии можно произвести на основе общего неравенства Чебышева:

(3.1.6)

где Sa - дисперсия эмпирической оценки асимметрии:

,(3.1.7)

где р - уровень значимости или вероятность ошибки первого рода: ошибки в том, что будет принят вывод о незначимости асимметрии при наличии значимой асимметрии (в формулу подставляют стандар­тные р = 0,05 или р = 0,01 и проверяют выполнение неравенства). Сходным образом оценивается значимость эксцесса:

(3.1.8)

где Sе - эмпирическая дисперсия оценки эксцесса:

. (3.1.9)

]

Гипотезы об отсутствии асимметрии и эксцесса принимаются с вероятностью ошибки р (пренебрежимо малой), если выполняются неравенства (3.1.6) и (3.1.8).

— 65 —
Страница: 1 ... 6061626364656667686970 ... 324