, (3.1.13). где xi - исходный балл по «сырой» шкале, для которой доказана нормальность распределения; - среднее арифметическое по «сырому» распределению; S - «сырое» стандартное отклонение; М- математическое ожидание по выбранной стандартной шкале; ? - стандартное отклонение по стандартной шкале. Если шкала подвергалась предварительной искусственной нормализации интервалов, то формула упрощается: zj =? zj =M (3.1.14) Приведем параметры для наиболее популярных стандартных шкал: 1) T -шкала Маккола (тест-опросник MMPI и другие тесты): М = 50 и ? = 10, 2) шкала IQ : М = 100 и ? = 15, 3) шкала «стэнайнов» (целые численные значения от 1 до 9 -стандартная девятка): М = 5,0 и ? = 2, 4) шкала «стенов» (стандартная десятка, 16PF Кеттелла): М = 5,5 .и ? = 2. Чтобы различать стандартные баллы, полученные с помощью линейной стандартизации и нелинейной нормализации интервалов, Р. Кеттелл ввел понятие «S-стенов» и «n-стенов». Таблицы «и-стенов», естественно, точнее отражают квантили эмпирического нормального распределения. Приведем образец такой таблицы для фактора А из тест-опросника 16PF; Сырые баллы 0-4 5-6 7 8-9 10-12 13 14-15 16 17-18 19-20 Стены 1 2 3 4 5 6 7 8 9 10 Применение стандартных шкал позволяет использовать более грубые, приближенные способы проверки типа распределения тестовых баллов. Если, например, процентильная нормализация с переводом в стены и линейная нормализация с переводом в стены по формуле (3.1.13) дают совпадающие целые значения стенов для каждого Y, то это означает, что распределение обладает нормальностью с точностью до «стандартной десятки». — 68 —
|