(3.1.15) где Ке - эмпирическое значение статистики Колмогорова; Fj1 - кумулятивная относительная частота для у-того интервала шкалы по первой половине выборки; Fj2 - та же частота для второй половины; n - полный объем выборки. Точные значения квантилей распределения Колмогорова для определения размеров выборки можно найти в кн.: Мюллер П. и др., 1982. Применение критерия Колмогорова не зависит от нормальности целого распределения и от необходимости производить нормализацию интервалов. * * * Итак, априорная предпосылка нормальности распределения тестовых баллов основывается скорее на принципах операционального удобства, чем на теоретической необходимости. Психометрически корректные процедуры получения устойчивых тестовых норм возможны с помощью специальных методов непараметрической статистики (критерий «хи-квадрат» и т. п.) для распределений произвольной формы. Выбор статистической модели распределения - законный произвол психометриста, пока сам тест выступает в качестве единственного эталона измеряемого свойства. В этом случае остается лишь тщательно следить за соответствием сферы применения диагностических норм той выборке испытуемых, на которой они были получены. Произвольность в выборе статистической модели шкалы исчезает, когда речь заходит о внешних по отношению к тесту критериях. Репрезентативность критериальных тестов. В таких тестах в качестве реального эталона применяется критерий, ради которого создается тест, - целевой критерий. Особое значение такой подход имеет в тех областях практики, где высокие результаты могут дать узкоспециализированные диагностические методики, нацеленные на очень конкретные и узкие критерии. Такая ситуация имеет место в обучении: тестирование, направленное на получение информации об уровне усвоения определенных знаний, умений и навыков (При профессиональном обучений), должно точно отражать уровень освоения этих навыков и тем самым давать надежный прогноз эффективности конкретной профессиональной деятельности, требующей применения этих навыков. Так возникают «тесты достижений», по отношению к которым критериальный подход обнаружил свою высокую эффективность (Гуревич К. М, Лубовский В. И,, 1982). Рассмотрим операциональную схему шкалирования, применяемую при создании критериального теста. Пусть имеется некоторый критерий С, ради прогнозирования которого психодиагност создает тест X. Для простоты представим С как дихотомическую переменную с двумя значениями: 1 и 0. С, = 1 означает, что j-й субъект достиг критерия (попал в «высокую» группу по критерию), Сj=0 означает, что i-й субъект не достиг критерия (попал в «низкую» группу). Психодиагност применяет на нормативной выборке тест X, и в результате каждый индивид получает тестовый балл Xi. После того как для каждого индивида из выборки становится известным значение С (иногда на это требуются месяцы и годы после момента тестирования), психодиагност группирует индивидов по порядку возрастания балла Xi и для каждого деления исходной шкалы сырых тестовых баллов подсчитывает эмпирическую вероятность Р попадания в «высокую» группу по критерию С. На рис. 5 показаны распределения вероятности Р (Ci = 1) в зависимости от Xi — 70 —
|