Об искусстве рассуждения

Страница: 1 ... 3637383940414243444546 ... 196

Как можно узнать, на какую высоту поднялся снаряд

Вы заметите также, что, если тело метнуть в воздух, тяжесть должна за­медлить движение в той же пропор­ции, в какой она ускоряет его при падении тела. Если в первую секунду поднимающееся тело проходит 7 футов, то во вторую оно пройдет 5 футов, в третью — 3 фута, а в четвертую — 1 фут.

В тот же промежуток времени оно, поднимаясь, теряет то же количество силы, какое оно приобрело бы, падая.

* Эту истину доказывают при помощи теории Галилея и другими ме­тодами, еще менее доступными читателям. Мне же нужен сам факт, и я довольствовался тем, чтобы сделать его наглядным путем предпо­ложения.


Отсюда можно узнать, на какую высоту поднялся снаряд наподобие бомбы. Надо лишь установить наблюде­нием число секунд, истекших с момента запала мортиры до момента падения бомбы; половина этого числа будет вре­менем падения. Итак, квадрат времени равен числу футов. Если это время — 10, то бомба поднялась на 100 футов.


57


56



ГЛАВА VI О ВЕСАХ

Когда плечи коромысла

колеблются

относительно его

центра, то скорости

различных точек плеч

коромысла относятся

друг к другу так же,

как их расстояния

от центра

Предположим, что на прямую АВ (рис. 9) мы нанесли с обеих сторон несколько точек на равном расстоя­нии от центра. Если данная прямая движется относительно центра, то эти точки опишут дуги, которые будут иметь различную для разных точек длину. Эти дуги будут частями про­странства, пройденными в одно и то же время всеми точ­ками. А ведь мы уже видели, что пройденные части про­странства равны произведению времени на скорость.

Время одинаково для всех точек, и поэтому скорости отно­сятся друг к другу как части пространства и, следователь­но, как расстояния от центра.

Сила, действующая

на тела, подвешенные

в этих точках, равна

произведению массы

на расстояние

Подвесим тела к этим точкам. Из­вестно, что сила есть произведение массы на скорость. Вы только что ви­дели, что скорости здесь относятся друг к другу, как расстояния. Сила, с которой каждое из этих тел будет стремиться вниз, бу­дет пропорциональна произведению его массы на его рас­стояние от центра.

Случай, когда возникает равновесие

Предположим, что два тела рав­ной массы (рис. 10) находятся на

равном расстоянии [от центра], например, в точке 10; они будут воздействовать одно на другое с одина­ковой силой. А приложит к В точно такое же усилие, что­бы его поднять, какое В приложит к А. Поэтому ни одно из них не поднимется и не опустится. Это случай равновесия. Если, уменьшив массу А наполовину, мы поместим его на двойное расстояние, например в точку 6, в то время как В

— 41 —
Страница: 1 ... 3637383940414243444546 ... 196