Вот еще одно рассуждение Лейбница, проливающее свет на его понимание математического знания, которое создается при помощи двух различных способностей - воображения, или общего чувства, и разума. "Так как душа наша сравнивает (например) числа и фигуры, находящиеся в цветах, с числами и фигурами, заключающимися в осязательных ощущениях, то необходимо должно существовать внутреннее чувство, где соединяются восприятия этих различных внешних чувств. Это и есть то, что называют воображением, которое обнимает как понятия отдельных чувств, ясные, но смутные, так и понятия общего чувства, ясные и отчетливые. Эти принадлежащие воображению ясные и отчетливые идеи составляют предмет математических наук, то есть арифметики и геометрии, - представляющих науки чистые, и их приложений к природе, составляющих математику прикладную... Не подлежит сомнению, что математические науки не были бы демонстративными и состояли бы в простой индукции или наблюдении, - которые никогда не могут обеспечить полную и совершенную всеобщность истин, заключающихся в этих науках, - если бы на помощь чувствам и воображению не приходило нечто более высокое, которое может доставить только один ум". Те понятия, которые целиком разложимы и могут быть сведены к тождественным утверждениям, или, иначе говоря, которые полностью аналитичны, Лейбниц считает созданными самим умом - ближе всего к таким понятиям, как мы уже знаем, стоит, по Лейбницу, понятие числа. Что же касается геометрических понятий, то они поддаются анализу настолько, насколько в их создании принимает участие ум, и неразложимы в той мере, в какой оказываются основанными на общем чувстве, т.е. на воображении. Именно поэтому доказательство возможности геометрического понятия ведется не через анализ, а через конструкцию, т.е. путем порождения предмета, соответствующего понятию. 4. Конструкция как принцип порождения объекта Вопрос о достоверности геометрии служил предметом непрекращавшихся споров на протяжении XVI-XVII вв. между представителями схоластики и защитниками новой науки. Схоластики при этом апеллировали к Аристотелю, у которого, как мы знаем, математика обосновывалась иначе, чем в работах Галилея, Декарта, Гоббса и др., поскольку Аристотель не считал ее "первой наукой" и по ее онтологическому статусу ставил после метафизики и физики. В схоластике в качестве аргумента приводилось соображение Аристотеля о том, что, в отличие от метафизики и физики, дающих причинное объяснение явлений, математика не может объяснять из причин. — 223 —
|