Поскольку критерием истинности (возможности) понятия является его непротиворечивость, то высшим законом логики и, соответственно, высшим принципом истинного знания Лейбниц считает закон тождества (или, в другой формулировке, закон противоречия), "без которого не было бы различия между истиной и ложью". Осуществить подлинный анализ понятия - значит, по Лейбницу, свести его к некоторому тождественному утверждению типа "А есть А". "Природа истины вообще состоит в том, - пишет Лейбниц, - что она есть нечто тождественное". Только тождественные утверждения "истинны через самих себя", а потому только о них можно сказать, что они совершенно несомненны и необходимы. "...Тождественные предложения, очевидно, недоказуемы по своей природе и потому могут поистине называться аксиомами". Лейбниц убежден, что все истины виртуально тождественны, только эту их тождественность трудно раскрыть. Осуществить подлинный анализ, восходящий к самым первым, тождественным положениям, не удалось, считает он, даже античным математикам, хотя некоторые из них и стремились к этому. "...Не всегда легко прийти к этому окончательному анализу, и как ни добивались этого геометры, по крайней мере древние, они еще не достигли этого". Но для создания строгой и достоверной науки необходимо, по мнению Лейбница, произвести анализ оснований научного знания, в том числе и математических аксиом. В своем рационализме, как видим, Лейбниц хотел бы пойти дальше, чем это смогла сделать античная философия и математика. Не без оснований один из исследователей учения Лейбница - Луи Кутюра - считает его метафизику интеллектуалистическим панлогизмом. В этом отношении Лейбниц - сын своего века, как и Декарт, Спиноза, Мальбранш. Однако Кутюра неправ, когда пытается отделить логику и математику Лейбница от его метафизики и объяснить последнюю как нечто полностью производное от логики. Тут скорее можно согласиться с точкой зрения В. Кабица, считавшего, что "логика Лейбница базируется на метафизических предпосылках и проникнута метафизикой". 3. Анализ математических аксиом "Я давно уже заявлял, - говорит Лейбниц, - что было бы важно доказать все наши вторичные аксиомы, которыми обычно пользуются, сведя их к первичным, или непосредственным и недоказуемым аксиомам, представляющим то, что я... назвал тождественными предложениями". Доказательством, таким образом, Лейбниц считает сведение обычной аксиомы к тождественному положению, которое одно только есть в строгом смысле самоочевидное высказывание. "Я убежден, что для усовершенствования наук даже необходимо доказывать некоторые предложения, называемые аксиомами..." Главный недостаток математических аксиом, в частности евклидовых, Лейбниц видит в том, что они опираются не только на разум, но и на воображение, т.е. являются не чисто аналитическими предложениями, а значит, не могут претендовать на подлинную достоверность. "Евклид, - пишет Лейбниц, - отнес к числу аксиом положение, что две прямые могут пересечься только один раз. Воображение, опирающееся на чувственный опыт, не позволяет нам представить более одного пересечения двух прямых; но не на этом следует строить науку, и если кто-нибудь думает, что воображение дает связь отчетливых идей, то это показывает, что он недостаточно осведомлен относительно источника истин, и множество предложений, доказываемых посредством других, предшествующих им предложений, должны им считаться непосредственными". — 219 —
|